MA is an orally active PG derivative with an excellent safety profile that is used primarily for the treatment of carcinomas of the breast and endometrium. We investigated the potential application of MA as an MDR-reversal agent using cell culture and human tumor xenograft models. The reversing activity of MA in vitro was compared with that of PG and VER in two human MDR cell lines, the colon carcinoma HCT-116/VM46 and the breast carcinoma MCF-7/ADR, and in a murine cell line, J774.2. At concentrations as low as 3 microM, MA was capable of partially restoring sensitivity to Act D in the HCT-116/VM46 cells and sensitivity to DOX in the MCF-7/ADR cells. Although less effective than VER, MA was about 2.5 times more potent than PG in reversing MDR at equimolar concentrations. Increased accumulation of DOX in drug-resistant cells that were treated simultaneously with MA was observed by flow cytometry. In vivo, using established human colon and breast carcinoma xenografts implanted s.c. in athymic mice, the combined therapy with MA and DOX resulted in enhanced antitumor activity relative to that of DOX alone in the MDR sublines. These results suggest that MA may be a promising clinical MDR-reversing agent.
MA is an orally active PG derivative with an excellent safety profile that is used primarily for the treatment of carcinomas of the breast and endometrium. We investigated the potential application of MA as an MDR-reversal agent using cell culture and human tumor xenograft models. The reversing activity of MA in vitro was compared with that of PG and VER in two human MDR cell lines, the colon carcinoma HCT-116/VM46 and the breast carcinoma MCF-7/ADR, and in a murine cell line, J774.2. At concentrations as low as 3 microM, MA was capable of partially restoring sensitivity to Act D in the HCT-116/VM46 cells and sensitivity to DOX in the MCF-7/ADR cells. Although less effective than VER, MA was about 2.5 times more potent than PG in reversing MDR at equimolar concentrations. Increased accumulation of DOX in drug-resistant cells that were treated simultaneously with MA was observed by flow cytometry. In vivo, using established human colon and breast carcinoma xenografts implanted s.c. in athymic mice, the combined therapy with MA and DOX resulted in enhanced antitumor activity relative to that of DOX alone in the MDR sublines. These results suggest that MA may be a promising clinical MDR-reversing agent.
An in vitro technique was developed to study the permeation and antimicrobial activity of graded concentrations of a new antibacterial agent, chlorhexidine phosphanilate (CHP), in cream formulations using Franz diffusion cells. Formulations containing from 0.2 to 2% CHP were quantitatively applied to intact excised skin and to skin from which the stratum corneum and partial epidermis had been enzymatically removed. Receptor fluids from diffusion cells were sampled over time and assayed by HPLC methods for chlorhexidine and phosphanilic acid; 24- and 48-hr samples of the diffusate from studies with damaged skin were also bioassayed using clinical isolates of appropriate microbial species. Through intact skin almost no permeation of CHP was observed over 48 hr. The failure of CHP to penetrate intact human skin suggests that normal stratum corneum is the rate-limiting barrier to penetration by this antimicrobial agent. In damaged skin lacking stratum corneum barrier, the release of CHP from the formulation becomes the rate-determining step. Coincident with penetrating damaged skin, CHP dissociates, and the molar ratio of the chlorhexidine and phosphanilate moities in the diffusate changes to favor phosphanilic acid. The extent of changes in the permeation rates of both moieties of CHP was directly related to the CHP concentration in cream. Both CHP moieties were found to reach equilibrium in the dermis within 24 hr after application. It was also observed that CHP creams down to 0.2% concentration yielded diffusates with activity exceeding the minimum inhibitory concentration of all test microorganisms within 24 hr.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.