BackgroundChemotherapy is important in the systematic treatment of breast cancer. To enhance the response of tumours to chemotherapy, attention has been focused on agents to reverse multidrug resistance (MDR) and on the sensitivity of tumour cells to chemical drugs. Hundreds of reversal drugs have been found in vitro, but their clinical application has been limited because of their toxicity. The reversal activity of progestogen compounds has been demonstrated. However, classical agents such as progesterone and megestrol (MG) also have high toxicity. Nomegestrol (NOM) belongs to a new derivation of progestogens and shows very low toxicity. We studied the reversal activity of NOM and compared it with that of verapamil (VRP), droloxifene (DRO), tamoxifen (TAM) and MG, and investigated the reversal mechanism, i.e. effects on the expression of the MDR1, glutathione S-transferase Pi (GSTÏ), MDR-related protein (MRP) and topoisomerase IIα (TopoIIα) genes, as well as the intracellular drug concentration and the cell cycle. The aim of the study was to examine the reversal effects of NOM on MDR in MCF7/ADR, an MCF7 breast cancer cell line resistant to adriamycin (ADR), and its mechanism of action.MethodsMCF7/ADR cells and MCF7/WT, an MCF7 breast cancer cell line sensitive to ADR, were treated with NOM as the acetate ester. With an assay based on a tetrazolium dye [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide; MTT], the effects of various concentrations of NOM on MDR in MCF7/ADR cells were studied. Before and after the treatment with 5 ÎŒM NOM, the expression of the MDR-related genes MDR1, GSTÏ, TopoIIα and MRP were assayed with a reverse transcriptase polymerase chain reaction (RT-PCR) immunocytochemistry assay. By using flow cytometry (FCM), we observed the intracellular ADR concentration and the effects of combined treatment with NOM and ADR on the cell cycle. Results collected were analysed with Student's t test.ResultsNOM significantly reversed MDR in MCF7/ADR cells. After treatment NOM at 20, 10 and 5 ÎŒM, chemosensitivity to ADR increased 21-fold, 12-fold and 8-fold, respectively. The reversal activity of NOM was stronger than that of the precursor compound MG, and comparable to that of VRP. After treatment with 5 ÎŒM NOM, the expression of both the MDR1 and the GSTÏ mRNA genes began to decline on the second day (P <0.05 and P <0.01, respectively), and reached the lowest level on the third day (both P <0.01); however, on the fifth day the expression levels began to increase again (both P <0.05). The expression of MRP and TopoIIα had no significant changes. Changes in the expression of P-glycoprotein (P-gp) and GSTÏ were similar to those of their mRNA expressions, showing early declines and late increases. Two hours after treatment with 20, 10 and 5 ÎŒM NOM, the intracellular ADR concentration increased 2.7-fold, 2.3-fold and 1.5-fold respectively. However, NOM did not increase ADR accumulation in MCF7/WT cells. FCM data showed that after 48 h of combined administration of NOM (20 ÎŒM) and ADR (from low...