Background:Little is known about the signaling dynamics of AMP-activated protein kinase. Results: We define the dynamics of yeast AMPK signaling under different glucose concentrations. Conclusion: The Snf1-Mig1 signaling system monitors glucose concentration changes and absolute glucose levels to adjust the metabolism to a wide range of conditions. Significance: This description of AMPK signaling dynamics will stimulate studies defining the integration of signaling and metabolism.
The last decade has seen a rapid development of experimental techniques that allow data collection from individual cells. These techniques have enabled the discovery and characterization of variability within a population of genetically identical cells. Nonlinear mixed effects (NLME) modeling is an established framework for studying variability between individuals in a population, frequently used in pharmacokinetics and pharmacodynamics, but its potential for studies of cell-to-cell variability in molecular cell biology is yet to be exploited. Here we take advantage of this novel application of NLME modeling to study cell-to-cell variability in the dynamic behavior of the yeast transcription repressor Mig1. In particular, we investigate a recently discovered phenomenon where Mig1 during a short and transient period exits the nucleus when cells experience a shift from high to intermediate levels of extracellular glucose. A phenomenological model based on ordinary differential equations describing the transient dynamics of nuclear Mig1 is introduced, and according to the NLME methodology the parameters of this model are in turn modeled by a multivariate probability distribution. Using time-lapse microscopy data from nearly 200 cells, we estimate this parameter distribution according to the approach of maximizing the population likelihood. Based on the estimated distribution, parameter values for individual cells are furthermore characterized and the resulting Mig1 dynamics are compared to the single cell times-series data. The proposed NLME framework is also compared to the intuitive but limited standard two-stage (STS) approach. We demonstrate that the latter may overestimate variabilities by up to almost five fold. Finally, Monte Carlo simulations of the inferred population model are used to predict the distribution of key characteristics of the Mig1 transient response. We find that with decreasing levels of post-shift glucose, the transient response of Mig1 tend to be faster, more extended, and displays an increased cell-to-cell variability.
A number of different viruses including respiratory syncytial virus (RSV) initiate infection of cells by binding to cell surface glycosaminoglycans and sulfated oligo- and polysaccharide mimetics of these receptors exhibit potent antiviral activity in cultured cells. We investigated whether the introduction of different lipophilic groups to the reducing end of sulfated oligosaccharides would modulate their anti-RSV activity. Our results demonstrate that the cholestanol-conjugated tetrasaccharide (PG545) exhibited ∼5- to 16-fold enhanced anti-RSV activity in cultured cells compared with unmodified sulfated oligosaccharides. Furthermore, PG545 displayed virus-inactivating (virucidal) activity, a feature absent in sulfated oligosaccharides. To inhibit RSV infectivity PG545 had to be present during the initial steps of viral infection of cells. The anti-RSV activity of PG545 was due to both partial inhibition of the virus attachment to cells and a more profound interference with some post-attachment steps as PG545 efficiently neutralized infectivity of the cell-adsorbed virus. The anti-RSV activity of PG545 was reduced when tested in the presence of human nasal secretions. Serial passages of RSV in the presence of increasing concentrations of PG545 selected for weakly resistant viral variants that comprised the F168S and the P180S amino acid substitutions in the viral G protein. Altogether we identified a novel and potent inhibitor of RSV, which unlike sulfated oligo- and polysaccharide compounds, could irreversibly inactivate RSV infectivity.
BackgroundThe yeast AMPK/SNF1 pathway is best known for its role in glucose de/repression. When glucose becomes limited, the Snf1 kinase is activated and phosphorylates the transcriptional repressor Mig1, which is then exported from the nucleus. The exact mechanism how the Snf1-Mig1 pathway is regulated is not entirely elucidated.ResultsGlucose uptake through the low affinity transporter Hxt1 results in nuclear accumulation of Mig1 in response to all glucose concentrations upshift, however with increasing glucose concentration the nuclear localization of Mig1 is more intense. Strains expressing Hxt7 display a constant response to all glucose concentration upshifts. We show that differences in amount of hexose transporter molecules in the cell could cause cell-to-cell variability in the Mig1-Snf1 system. We further apply mathematical modelling to our data, both general deterministic and a nonlinear mixed effect model. Our model suggests a presently unrecognized regulatory step of the Snf1-Mig1 pathway at the level of Mig1 dephosphorylation. Model predictions point to parameters involved in the transport of Mig1 in and out of the nucleus as a majorsource of cell to cell variability.ConclusionsWith this modelling approach we have been able to suggest steps that contribute to the cell-to-cell variability. Our data indicate a close link between the glucose uptake rate, which determines the glycolytic rate, and the activity of the Snf1/Mig1 system. This study hence establishes a close relation between metabolism and signalling.Electronic supplementary materialThe online version of this article (doi:10.1186/s12918-017-0435-z) contains supplementary material, which is available to authorized users.
Background/Objectives:The SNF1/AMPK protein kinase has a central role in energy homeostasis in eukaryotic cells. It is activated by energy depletion and stimulates processes leading to the production of ATP while it downregulates ATP-consuming processes. The yeast SNF1 complex is best known for its role in glucose derepression.Methods:We performed a network reconstruction of the Snf1 pathway based on a comprehensive literature review. The network was formalised in the rxncon language, and we used the rxncon toolbox for model validation and gap filling.Results:We present a machine-readable network definition that summarises the mechanistic knowledge of the Snf1 pathway. Furthermore, we used the known input/output relationships in the network to identify and fill gaps in the information transfer through the pathway, to produce a functional network model. Finally, we convert the functional network model into a rule-based model as a proof-of-principle.Conclusions:The workflow presented here enables large scale reconstruction, validation and gap filling of signal transduction networks. It is analogous to but distinct from that established for metabolic networks. We demonstrate the workflow capabilities, and the direct link between the reconstruction and dynamic modelling, with the Snf1 network. This network is a distillation of the knowledge from all previous publications on the Snf1/AMPK pathway. The network is a knowledge resource for modellers and experimentalists alike, and a template for similar efforts in higher eukaryotes. Finally, we envisage the workflow as an instrumental tool for reconstruction of large signalling networks across Eukaryota.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.