Due to the spead of objects connected to the internet and objects connected to each other, agriculture nowadays knows a huge volume of data exchanged called big data. Therefore, this paper discusses connected agriculture or agriculture 4.0 instead of a traditional one. As irrigation is one of the foremost challenges in agriculture, it is also moved from manual watering towards smart watering based on big data analytics where the farmer can water crops regularly and without wastage even remotely. The method used in this paper combines big data, remote sensing and data mining algorithms (neural network and support vector machine). In this paper, we are interfacing the databricks platform based on the apache Spark tool for using machine learning to predict the soil drought based on detecting the soil moisture and temperature.
Big <span>data in agriculture is defined as massive volumes of data with a wide variety of sources and types which can be captured using internet of things sensors (soil and crops sensors, drones, and meteorological stations), analyzed and used for decision-making. In the era of internet of things (IoT) tools, connected agriculture has appeared. Big data outputs can be exploited by the future connected agriculture in order to reduce cost and time production, improve yield, develop new products, offer optimization and smart decision-making. In this article, we propose a functional framework to model the decision-making process in digital and connected agriculture</span>.
Introduction. Deep learning is a modern technique for image processing and data analysis with promising results and great potential. Successfully applied in various fields, it has recently entered the field of agriculture to address such agricultural problems as disease identification, fruit/plant classification, fruit counting, pest identification, and weed detection. The latter was the subject of our work. Weeds are harmful plants that grow in crops, competing for things like sunlight and water and causing crop yield losses. Traditional data processing techniques have several limitations and consume a lot of time. Therefore, we aimed to take inventory of deep learning networks used in agriculture and conduct experiments to reveal the most efficient ones for weed control. Study objects and methods. We used new advanced algorithms based on deep learning to process data in real time with high precision and efficiency. These algorithms were trained on a dataset containing real images of weeds taken from Moroccan fields. Results and discussion. The analysis of deep learning methods and algorithms trained to detect weeds showed that the Convolutional Neural Network is the most widely used in agriculture and the most efficient in weed detection compared to others, such as the Recurrent Neural Network. Conclusion. Since the Convolutional Neural Network demonstrated excellent accuracy in weed detection, we adopted it in building a smart system for detecting weeds and spraying them in place.
The agriculture 4.0 revolution is an opportunity for farmers to meet the challenges in food production. It has become necessary to adopt a set of agricultural practices based on advanced technologies following the agriculture 4.0 revolution. This latter enables the creation of added value by combining innovative technologies: precision agriculture, information and communication technology, robotics, and Big Data. As an enterprise, a connected farm is also highly sensitive to strategic changes like organizational changes, changes in objectives, modified variety, new business objects, processes, etc. To strategically control its information system, we propose a metamodeling approach based on the ISO/IS 19440 enterprise meta-model, where we added some new constructs relating to new advanced digital technologies for Smart and Connected agriculture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.