In agriculture, weeds cause direct damage to the crop, and it primarily affects the crop yield potential. Manual and mechanical weeding methods consume a lot of energy and time and do not give efficient results. Chemical weed control is still the best way to control weeds. However, the widespread and large-scale use of herbicides is harmful to the environment. Our study's objective is to propose an efficient model for a smart system to detect weeds in crops in real-time using computer vision. Our experiment dataset contains images of two different weed species well known in our region strained in this region with a temperate climate. The first is the Phalaris Paradoxa. The second is Convolvulus, manually captured with a professional camera from fields under different lighting conditions (from morning to afternoon in sunny and cloudy weather). The detection of weed and crop has experimented with four recent pre-configured open-source computer vision models for object detection: Detectron2, EfficientDet, YOLO, and Faster R-CNN. The performance comparison of weed detection models is executed on the Open CV and Keras platform using python language.
Due to the spead of objects connected to the internet and objects connected to each other, agriculture nowadays knows a huge volume of data exchanged called big data. Therefore, this paper discusses connected agriculture or agriculture 4.0 instead of a traditional one. As irrigation is one of the foremost challenges in agriculture, it is also moved from manual watering towards smart watering based on big data analytics where the farmer can water crops regularly and without wastage even remotely. The method used in this paper combines big data, remote sensing and data mining algorithms (neural network and support vector machine). In this paper, we are interfacing the databricks platform based on the apache Spark tool for using machine learning to predict the soil drought based on detecting the soil moisture and temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.