L'objectif de ce travail est l'étude d'une méthode de résolution numérique par éléments finis semilagrangiennes afin de résoudre les problémes évolutifs de convection-diffusion issus des milieux poreux. La méthode proposée permet d'utiliser une approximation par éléments finis d'ordre égal pour toutes les solutions du probléme. En outre, la condition standard de Courant-Friedrichs-Lewy est assouplie avec le traitement lagrangien des termes de convection, et les erreurs de troncature sont réduites dans la partie diffusion-réaction du probléme. Dans cette étude, une analyse de la convergence et de la stabilité de la méthode proposée est aussi présentée, ainsi que les estimations des erreurs dans la norme L 2 dérivées pour toutes les solutions numériques. Les tests numériques sont illustrées par quelques exemples afin de vérifier les estimations théoriques et de démontrer la grande précision et l'efficacité de la méthode proposée. ABSTRACT. We present a Galerkin-characteristic finite element method for the numerical solution of time-dependent convection-diffusion problems in porous media. The proposed method allows the use of equal-order finite element approximations for all solutions in the problem. In addition, the standard Courant-Friedrichs-Lewy condition is relaxed with the Lagrangian treatment of convection terms, and the time truncation errors are reduced in the diffusion-reaction part. Analysis of convergence and stability of the proposed method is also investigated in this study and error estimates in the L 2 -norm are established for the numerical solutions. Numerical performance of the method is examined using two examples to verify the theoretical estimates and to demonstrate the high accuracy and efficiency of the proposed Galerkin-characteristic finite element method. MOTS-CLÉS. Problémes de convection-diffusion, Équation de Darcy, Milieux poreux, Méthode semi-lagrangienne, Éléments finis, Estimation des erreurs a priori.
This paper investigates the interaction between natural convection and heat explosion in porous media. A meshless collocation method based on multiquadric radial basis functions has been applied to study the problem in an inclined two-dimensional porous media. The governing equations consist of coupling the Darcy equations in the Boussinesq approximation of low density variations to the heat equation with a nonlinear chemical source term. The numerical results obtained are in good agreement with some previous studies that consider the vertical direction. A complex behaviour of solutions is observed, including periodic and aperiodic oscillations. We have shown that a small inclination of the container stabilizes the reactive fluid and can prevent thermal explosion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.