2021
DOI: 10.21494/iste.op.2021.0700
|View full text |Cite
|
Sign up to set email alerts
|

Analysis of a Galerkin-characteristic finite element method for convection-diffusion problems in porous media

Abstract: L'objectif de ce travail est l'étude d'une méthode de résolution numérique par éléments finis semilagrangiennes afin de résoudre les problémes évolutifs de convection-diffusion issus des milieux poreux. La méthode proposée permet d'utiliser une approximation par éléments finis d'ordre égal pour toutes les solutions du probléme. En outre, la condition standard de Courant-Friedrichs-Lewy est assouplie avec le traitement lagrangien des termes de convection, et les erreurs de troncature sont réduites dans la parti… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
3
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
4
2

Relationship

0
6

Authors

Journals

citations
Cited by 7 publications
(3 citation statements)
references
References 41 publications
0
3
0
Order By: Relevance
“…In eqns ( 15) and ( 16), 𝑑 and 𝑑 are the derivative operators computed based on the upwind and diffusion line sets, respectively, using eqns (10) and (11).…”
Section: Finite Line Methods For Solving Convection-diffusion Equationsmentioning
confidence: 99%
See 2 more Smart Citations
“…In eqns ( 15) and ( 16), 𝑑 and 𝑑 are the derivative operators computed based on the upwind and diffusion line sets, respectively, using eqns (10) and (11).…”
Section: Finite Line Methods For Solving Convection-diffusion Equationsmentioning
confidence: 99%
“…If needed, the formulations for more high-order derivatives can be established in a similar recursive manner. In eqns (10) and (11), 𝑑 and 𝑑 are called the first order and second order derivative operators, respectively. Eqns ( 10) and ( 11) can be directly substituted into the governing equations and related boundary conditions of a specific engineering problem to set up the discretized system of equations.…”
Section: ( )mentioning
confidence: 99%
See 1 more Smart Citation