We consider the Erdős-Rényi random graph G(n, p) inside the critical window, that is when p = 1/n + λn −4/3 , for some fixed λ ∈ R. We prove that the sequence of connected components of G(n, p), considered as metric spaces using the graph distance rescaled by n −1/3 , converges towards a sequence of continuous compact metric spaces. The result relies on a bijection between graphs and certain marked random walks, and the theory of continuum random trees. Our result gives access to the answers to a great many questions about distances in critical random graphs. In particular, we deduce that the diameter of G(n, p) rescaled by n −1/3 converges in distribution to an absolutely continuous random variable with finite mean.
Assign i.i.d. standard exponential edge weights to the edges of the complete graph Kn, and let Mn be the resulting minimum spanning tree. We show that Mn converges in the local weak sense (also called Aldous-Steele or Benjamini-Schramm convergence), to a random infinite tree M . The tree M may be viewed as the component containing the root in the wired minimum spanning forest of the Poisson-weighted infinite tree (PWIT). We describe a Markov process construction of M starting from the invasion percolation cluster on the PWIT. We then show that M has cubic volume growth, up to lower order fluctuations for which we provide explicit bounds. Our volume growth estimates confirm recent predictions from the physics literature [18], and contrast with the behaviour of invasion percolation on the PWIT [2] and on regular trees [6], which exhibit quadratic volume growth. 10 4. Properties of the forward maximal process ((X n , Z n ), n ≥ 1) 13 4.
We study invasion percolation on Aldous' Poisson-weighted infinite tree, and derive two distinct Markovian representations of the resulting process. One of these is the $\sigma\to\infty$ limit of a representation discovered by Angel et al. [Ann. Appl. Probab. 36 (2008) 420-466]. We also introduce an exploration process of a randomly weighted Poisson incipient infinite cluster. The dynamics of the new process are much more straightforward to describe than those of invasion percolation, but it turns out that the two processes have extremely similar behavior. Finally, we introduce two new "stationary" representations of the Poisson incipient infinite cluster as random graphs on $\mathbb {Z}$ which are, in particular, factors of a homogeneous Poisson point process on the upper half-plane $\mathbb {R}\times[0,\infty)$.Comment: Published in at http://dx.doi.org/10.1214/11-AAP761 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
Given a branching random walk, let $M_n$ be the minimum position of any member of the $n$th generation. We calculate $\mathbf{E}M_n$ to within O(1) and prove exponential tail bounds for $\mathbf{P}\{|M_n-\mathbf{E}M_n|>x\}$, under quite general conditions on the branching random walk. In particular, together with work by Bramson [Z. Wahrsch. Verw. Gebiete 45 (1978) 89--108], our results fully characterize the possible behavior of $\mathbf {E}M_n$ when the branching random walk has bounded branching and step size.Comment: Published in at http://dx.doi.org/10.1214/08-AOP428 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org
Let Mn be a simple triangulation of the sphere S 2 , drawn uniformly at random from all such triangulations with n vertices. Endow Mn with the uniform probability measure on its vertices. After rescaling graph distance by (3/(4n)) 1/4 , the resulting random measured metric space converges in distribution, in the Gromov-Hausdorff-Prokhorov sense, to the Brownian map. In proving the preceding fact, we introduce a labelling function for the vertices of Mn. Under this labelling, distances to a distinguished point are essentially given by vertex labels, with an error given by the winding number of an associated closed loop in the map. We establish similar results for simple quadrangulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.