Herein we disclose the results of our investigations regarding the interactions between the biologically relevant nitrate oxoanion and several "two-wall" aryl-extended calix[4]pyrroles. There exists a clear relationship between the electronic nature of the aromatic walls of the calix[4]pyrroles and the stability of the nitrate⊂calix[4]pyrrole complex. This suggests that NO3(-)-π interactions have an important electrostatic component. We provide energetic estimates for the interaction of nitrate with several phenyl derivatives. Additionally, we report solid-state evidence for a preferred binding geometry of the nitrate anion included in the calix[4]pyrroles. Finally, the "two-wall" aryl-extended calix[4]pyrroles show excellent activity in ion transport through lipid-based lamellar membranes. Notably the best anion transporters are highly selective for transport of nitrate over other anions.
This tutorial review aims to present and describe selected examples of still quite rare endo-functionalized supramolecular capsules. Only capsules assembled through the use of neutral or polar hydrogen bonding interactions are covered. The ability of these capsules to orient and control the position of the encapsulated guest molecules represents their stand-out feature. Thus, the way in which guests interact with the functionalized interior of the capsules is discussed in detail. Several of the described capsular assemblies display chiral architectures. The manner in which chirality is manifested in these assemblies is far from trivial. For this reason, we also offer explanations of the chiral features expressed by the relevant capsules and their encapsulation complexes.
Herein, we report our latest experimental investigations of halide-π interactions in solution. We base this research on the thermodynamic characterization of a series of 1:1 complexes formed between halides (Cl(-), Br(-), and I(-)) and several α,α-isomers of "two-wall" calix[4]pyrrole receptors bearing two six-membered aromatic rings in opposed meso positions. The installed aromatic systems feature a broad range of electron density as indicated by the calculated values for their electrostatic surface potentials at the center of the rings. We show that a correlation exists between the electronic nature of the aromatic walls and the thermodynamic stability of the X(-)⊂receptor complexes. We give evidence for the existence of both repulsive and attractive interactions between π systems and halide anions in solution (between 1 and -1 kcal/mol). We dissect the measured free energies of binding for chloride and bromide with the receptor series into their enthalpic and entropic thermodynamic quantities. In acetonitrile solution, the binding enthalpy values remain almost constant throughout the receptor series, and the differences in free energies are provoked exclusively by changes in the entropic term of the binding processes. Most likely, this unexpected behavior is owed to strong solvation effects that make up important components of the measured magnitudes for the enthalpies and entropies of binding. The use of chloroform, a much less polar solvent, limits the impact of solvation effects revealing the expected existence of a parallel trend between free energies and enthalpies of binding. This result indicates that halide-π interactions in organic solvents are mainly driven by enthalpy. However, the typical paradigm of enthalpy-entropy compensation is still not observed in this less polar solvent.
Current methods for creatinine quantification suffer from significant drawbacks when aiming to combine accuracy, simplicity, and affordability. Here, an unprecedented synthetic receptor, an aryl-substituted calix[4]pyrrole with a monophosphonate bridge, is reported that displays remarkable affinity for creatinine and the creatininium cation. The receptor works by including the guest in its deep and polar aromatic cavity and establishing directional interactions in three dimensions. When incorporated into a suitable polymeric membrane, this molecule acts as an ionophore. A highly sensitive and selective potentiometric sensor suitable for the determination of creatinine levels in biological fluids, such as urine or plasma, in an accurate, fast, simple, and cost-effective way has thus been developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.