An important part of cosmological model fitting relies on correlating distance indicators of objects (for example type Ia supernovae) with their redshift, often illustrated on a Hubble diagram. Comparing the observed correlation with a homogeneous model is one of the key pieces of evidence for dark energy. The presence of cosmic structures introduces a bias and scatter, mainly due to gravitational lensing and peculiar velocities, but also due to smaller non-linear relativistic contributions which are more difficult to account for. For the first time we perform ray tracing onto halos in a relativistic N-body simulation. Our simulation is the largest that takes into account all leading-order corrections from general relativity in the evolution of structure, and we present a novel methodology for working out the non-linear projection of that structure onto the observer's past light cone. We show that the mean of the bias in the Hubble diagram is indeed as small as expected from perturbation theory. However, the distribution of sources is significantly skewed with a very long tail of highly magnified objects and we illustrate that the bias of cosmological parameters strongly depends on the function of distance which we consider.
Planned efforts to probe the largest observable distance scales in future cosmological surveys are motivated by a desire to detect relic correlations left over from inflation and the possibility of constraining novel gravitational phenomena beyond general relativity (GR). On such large scales, the usual Newtonian approaches to modelling summary statistics like the power spectrum and bispectrum are insufficient, and we must consider a fully relativistic and gauge-independent treatment of observables such as galaxy number counts in order to avoid subtle biases, e.g. in the determination of the fNL parameter.In this work, we present an initial application of an analysis pipeline capable of accurately modelling and recovering relativistic spectra and correlation functions. As a proof of concept, we focus on the non-zero dipole of the redshift-space power spectrum that arises in the cross-correlation of different mass bins of dark matter haloes, using strictly gauge-independent observable quantities evaluated on the past light cone of a fully relativistic N-body simulation in a redshift bin 1.7 ≤ z ≤ 2.9. We pay particular attention to the correct estimation of power spectrum multipoles, comparing different methods of accounting for complications such as the survey geometry (window function) and evolution/bias effects on the past light cone, and discuss how our results compare with previous attempts at extracting novel GR signatures from relativistic simulations.
The standard cosmological model is inherently relativistic, and yet a wide range of cosmological observations can be predicted accurately from essentially Newtonian theory. This is not the case on ‘ultra-large’ distance scales, around the cosmic horizon size, however, where relativistic effects can no longer be neglected. In this paper, we present a novel suite of 53 fully relativistic simulations generated using the gevolution code, each covering the full sky out to z ≈ 0.85, and approximately 1930 square degrees out to z ≈ 3.55. These include a relativistic treatment of massive neutrinos, as well as the gravitational potential that can be used to exactly calculate observables on the past light cone. The simulations are divided into two sets, the first being a set of 39 simulations of the same fiducial cosmology (based on the Euclid Flagship 2 cosmology) with different realisations of the initial conditions, and the second which fixes the initial conditions, but varies each of seven cosmological parameters in turn. Taken together, these simulations allow us to perform statistical studies and calculate derivatives of any relativistic observable with respect to cosmological parameters. As an example application, we compute the cross-correlation between the Doppler magnification term in the convergence, κv, and the CDM+baryon density contrast, δcb, which arises only in a (special) relativistic treatment. We are able to accurately recover this term as predicted by relativistic perturbation theory, and study its sample variance and derivatives with respect to cosmological parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.