Poor transport of neuropharmaceutics through central nervous system (CNS) barriers limits the development of effective treatments for CNS disorders. We present the facile synthesis of a novel neuroinflammation-targeting polyethylene glycol–based dendrimer (PEGOL-60) using an efficient click chemistry approach. PEGOL-60 reduces synthetic burden by achieving high hydroxyl surface density at low generation, which plays a key role in brain penetration and glia targeting of dendrimers in CNS disorders. Systemically administered PEGOL-60 crosses impaired CNS barriers and specifically targets activated microglia/macrophages at the injured site in diverse animal models for cerebral palsy, glioblastoma, and age-related macular degeneration, demonstrating its potential to overcome impaired blood-brain, blood-tumor-brain, and blood-retinal barriers and target key cells in the CNS. PEGOL-60 also exhibits powerful intrinsic anti-oxidant and anti-inflammatory effects in inflamed microglia in vitro. Therefore, PEGOL-60 is an effective vehicle to specifically deliver therapies to sites of CNS injury for enhanced therapeutic outcomes in a range of neuroinflammatory diseases.
Switching microglia from a disease exacerbating, ‘pro-inflammatory’ state into a neuroprotective, ‘anti-inflammatory’ phenotype is a promising strategy for addressing multiple neurodegenerative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.