The whitespotted sawyer, Monochamus scutellatus scutellatus (Say) (Coleoptera: Ce-rambycidae), is one of the most damaging wood-boring insects in recently burned boreal forests of North America. In Canada, salvage logging after wildfire contributes to maintaining the timber volume required by the forest industry, but larvae of this insect cause significant damage that reduces the economic value of lumber products. This study aimed to estimate damage progression as a function of temperature in recently burned black spruce (Picea mariana (Miller) Britton, Sterns, and Poggenburg) and jack pine (Pinus banksiana Lambert) trees. Using axial tomographic technology, we modeled subcortical development and gallery depth progression rates as functions of temperature for both tree species. Generally, these rates were slightly faster in black spruce than in jack pine logs. Eggs laid on logs kept at 12 degrees C did not hatch or larvae were unable to establish themselves under the bark because no larval development was observed. At 16 degrees C, larvae stayed under the bark for > 200 d before penetrating into the sapwood. At 20 degrees C, half of the larvae entered the sapwood after 30-50 d, but gallery depth progression stopped for approximately 70 d, suggesting that larvae went into diapause. The other half of the larvae entered the sapwood only after 100-200 d. At 24 and 28 degrees C, larvae entered the sapwood after 26-27 and 21 d, respectively. At 28 degrees C, gallery depth progressed at a rate of 1.44 mm/d. Temperature threshold for subcortical development was slightly lower in black spruce (12.9 degrees C) than in jack pine (14.6 degrees C) and it was 1 degrees C warmer for gallery depth progression for both tree species. These results indicate that significant damage may occur within a few months after fire during warm summers, particularly in black spruce, which highlights the importance of beginning postfire salvage logging as soon as possible to reduce economic losses.
Although computed tomography (CT-Scanning) has been regularly applied to core analyses in petroleum geology, there is still a need to improve our ways to document porosity and porosity distribution in the entire pore scale spectrum, from the tens of nanometer to the meter-scale. Porosity imaging is particularly crucial for complex and heterogeneous rocks such as hydrothermally altered and fractured carbonates. The present work proposes a improved method using medical-CT to reliably estimate reservoir porosity. An in-house core-flooding setup allowed to analyse several individual core samples, scanned simultaneously (dry and saturated), as well as continuous core sections up to 1.5 m long. Without any prior knowledge of samples, three-dimensional alignment and subtraction of the two data sets (dry and saturated states) results in the generation of 3D porosity matrices. The methodology tested on a large set of reference core material shows a strong correlation between conventional gas porosimetry techniques and porosity from CT-scan. The added value of the porosity measurements by CT-scan is, first of all, the generation of 3D images of pore network, allowing to assess spatial attributes of macropores, their distribution and connectivity. Secondly, the CT-scan method also provides continuous porosity profile at the millimetric scale. Both developments are crucial for the understanding of reservoir rock properties.
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.