Single walled carbon nanotube (SWCNT) networks present outstanding potential for the development of SWCNT-based gas sensors. Due to the complexity of the transport properties of this material, the physical mechanisms at stake during exposure to gas are still under debate. Previously suggested mechanisms are charge transfer between gas molecules and SWCNT and Schottky barrier modulation. By comparing electrical measurements with an analytical model based on Schottky barrier modulation, we demonstrate that one mechanism or the other is predominant depending on the percolation of metallic carbon nanotubes. Below the metallic SWCNT percolation threshold, sensing is dominated by the modulation of the Schottky barrier, while above this threshold, it is only attributed to a charge transfer between SWCNT and gas molecules. Both mechanisms are discussed in terms of sensitivity and resolution leading to routes for the optimization of a gas sensor architecture based on highly enriched semiconducting carbon nanotube films.
International audienceThis contribution deals with all-printed infrared sensors fabricated using multiwalled carbon nanotubes deposited on a flexible polyimide substrate. A high responsivity of up to 1.2 kV/W is achieved at room temperature in ambient air. We evidence a strong dependence of the device transduction mechanism on the surrounding atmosphere, which can be attributed to bolometric effect interference with water molecule desorption upon irradiation
International audienceSpray gun deposition technique was investigated for large area deposition of nano-catalysts. In particular, we studied iron chloride salts solutions as catalyst precursor for the synthesis of carbon nanotubes (CNTs). Iron chloride salts are shown to decompose upon thermal annealing into Fe(III) oxide based species that make it suitable for further growth of various carbon nanotube structures. Depending on the spraying process, versatile synthesis of 2-D single-walled carbon nanotube network as well as vertically aligned carbon nanotubes arrays on functional substrates can be achieved. Such simple process for the preparation of CNT-based architecture opens new perspectives in the field of thin-film transistor and nanostructured electrodes
The first paper showing the great potentiality of Carbon Nanotubes Field Effect transistors (CNTFETs) for gas sensing applications was published in 2000 [1]. It has been demonstrated that the performances of this kind of sensors are extremely interesting: a sensitivity of around 100ppt (e.g. for NO2 [2]) has been achieved in 2003 and several techniques to improve selectivity have been tested with very promising results [2]. The main issues that have not allowed, up to now, these devices to strike more largely the market of sensors, have been the lack of an industrial method to obtain low-cost devices, a demonstration of their selectivity in relevant environments and finally a deeper study on the effect of humidity and the possible solutions to reduce it. This contribution deals with CNTFETs based sensors fabricated using air-brush technique deposition on large surfaces. Compared to our last contribution [3], we have optimized the air-brush technique in order to obtain high performances transistors (Log(Ion)/Log(Ioff) ∼ 5/6) with highly reproducible characteristics : this is a key point for the industrial exploitation. We have developed a machine which allows us the dynamic deposition on heated substrates of the SWCNT solutions, improving dramatically the uniformity of the SWCNT mats. We have performed tests using different solvents that could be adapted as a function of the substrates (e.g. flexible substrates). Moreover these transistors have been achieved using different metal electrodes (patented approach [4]) in order to improve selectivity. Results of tests using NO2, NH3 with concentrations between ∼ 1ppm and 10ppm will be shown during the meeting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.