Cytosolic sensing of pathogens and damage by myeloid and barrier epithelial cells assembles large complexes called inflammasomes, which activate inflammatory caspases to process cytokines (IL-1β) and gasdermin D (GSDMD). Cleaved GSDMD forms membrane pores, leading to cytokine release and inflammatory cell death (pyroptosis). Inhibiting GSDMD is an attractive strategy to curb inflammation. Here we identify disulfiram, a drug for treating alcohol addiction, as an inhibitor of pore formation by GSDMD, but not other members of the GSDM family. Disulfiram blocks pyroptosis and cytokine release in cells and lipopolysaccharide (LPS)-induced septic death in mice. At nanomolar concentration, disulfiram covalently modifies human/mouse Cys191/Cys192 in GSDMD to block pore formation. Disulfiram still allows IL-1β and GSDMD processing, but abrogates pore formation, thereby preventing IL-1β release and pyroptosis. The role of disulfiram in inhibiting GSDMD provides new therapeutic indications for repurposing this safe drug to counteract inflammation, which contributes to many human diseases.
NLRP1 is a cytosolic inflammasome sensor that mediates activation of caspase-1, which in turn induces cytokine maturation and pyroptotic cell death 1-6 . Gain-of-function NLPR1 mutations cause skin inflammatory diseases including carcinoma, keratosis, and papillomatosis 7-14 . NLRP1 contains a unique function-to-find domain (FIIND) that autoproteolyzes into noncovalently associated subdomains [15][16][17][18] . Proteasomal degradation of the autoinhibitory N-terminal fragment (NT) activates NLRP1 by releasing the inflammatory C-terminal fragment (CT) 19,20 . Cytosolic dipeptidyl peptidases 8 and 9 (DPP8/9) interact with NLRP1, and small-molecule DPP8/9 inhibitors activate NLRP1 by poorly characterized mechanisms 11,19,21 . Here, we report cryo-EM structures of the human NLRP1-DPP9 complex, alone and in complex with the DPP8/9 inhibitor Val-boroPro (VbP). Surprisingly, the NLRP1-DPP9 complex is a ternary complex comprised of DPP9, one intact FIIND of a non-degraded full-length NLRP1 (NLRP1-FL) and one NLRP1-CT freed by NT degradation. The N-terminus of the NLRP1-CT unfolds and inserts into the DPP9 active site but is not cleaved by DPP9, and this binding is disrupted by VbP. Structure-based mutagenesis reveals that the binding of NLRP1-CT to DPP9 requires NLRP1-FL and vice versa, and inflammasome activation by ectopic NLRP1-CT expression is rescued by co-expressing autoproteolysis-deficient NLRP1-FL. Collectively, these data indicate that DPP9 functions as a "bomb-diffuser" to prevent NLRP1-CTs from inducing inflammation during homeostatic protein turnover..
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.