Two alternating purine-pyrimidine sequences of the d(TG)n.d(CA)n-type (170bp and 60 bp in length) lie upstream of the rat prolactin (rPRL) gene. Conformational studies of plasmids containing these sequences indicate that both form left-handed (Z) DNA, with transitions initiating at superhelical densities of -0.041 and -0.044 respectively. These alternating purine-pyrimidine (APP) sequences are hypersensitive to cleavage with S1 nuclease both at the boundaries and within these APP repeats, where there is a loss in APP alternation. We have investigated the function of one of these Z-DNA sequences in the regulation of rPRL transcription, by linking regions of the 5' flanking sequence of the rPRL gene to a reporter gene encoding chloramphenicol acetyltransferase (CAT), and transferring these plasmids into GH3 pituitary tumour cell lines. The major conclusion from these studies is that the 170bp repeat exerts a negative effect on the transcription of the rPRL gene, and also down-regulates the expression of the fusion gene pRSVcat when cloned 50bp upstream of the Rous sarcoma virus promoter. However, despite its proximity to an estrogen response element in prolactin, this sequence does not affect the responsiveness of the rPRL gene to estrogen.
Three serine residues (Ser193, Ser194, Ser197) in the fifth transmembrane‐spanning region of the D2 dopamine receptor have been mutated separately to alanine and the effects of the mutations determined in ligand‐binding experiments with [3H]spiperone. For many antagonists the mutations had little effect, showing that the overall conformation of the mutant receptors was similar to that of the native, although there were effects on the binding of certain antagonists. The effect of the mutations on agonist binding to the free receptor (uncoupled from G proteins) was determined in the presence of GTP (100 µM). This showed that there was no single mode of binding of catecholamine agonists to the receptor and that all three serine residues can participate in the binding of some agonists, possibly through hydrogen bonds to the catechol hydroxyl groups. Coupling of the mutant receptors to G proteins was assessed from agonist‐binding curves in the absence of GTP, when higher and lower affinity agonist‐binding sites were seen. Receptor/G protein coupling was generally unaffected by the Ala193 and Ala194 mutations, but the Ala197 mutation eliminated receptor/G protein coupling for some agonists. These data show that the interactions of agonists with the free and coupled forms of the receptor are different.
Three conserved serine residues (Ser193, Ser194, and Ser197) in transmembrane spanning region (TM) V of the D2 dopamine receptor have been mutated to alanine, individually and in combination, to explore their role in ligand binding and G protein coupling. The multiple Ser -->Ala mutations had no effect on the binding of most antagonists tested, including [3H]spiperone, suggesting that the multiple mutations did not affect the overall conformation of the receptor protein. Double or triple mutants containing an Ala197 mutation showed a decrease in affinity for domperidone, whereas Ala193 mutants showed an increased affinity for a substituted benzamide, remoxipride. However, dopamine showed large decreases in affinity (>20-fold) for each multiple mutant receptor containing the Ser193Ala mutation, and the high-affinity (coupled) state of the receptor (in the absence of GTP) could not be detected for any of the multiple mutants. A series of monohydroxylated phenylethylamines and aminotetralins was tested for their binding to the native and multiple mutant D2 dopamine receptors. The results obtained suggest that Ser193 interacts with the hydroxyl of S-5-hydroxy-2-dipropylaminotetralin (OH-DPAT) and Ser197 with the hydroxyl of R-5-OH-DPAT. We predict that Ser193 interacts with the hydroxyl of R-7-OH-DPAT and the 3-hydroxyl (m-hydroxyl) of dopamine. Therefore, the conserved serine residues in TMV of the D2 dopamine receptor are involved in hydrogen bonding interactions with selected antagonists and most agonists tested and also enable agonists to stabilise receptor-G protein coupling.
Athletes exhibit enhanced conduit artery diameters at rest and in response to vasodilator stimuli. Despite this long-term training effect on arterial structure, resumption of training further enhances diameter, an effect that occurs within 3 months.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.