As people across the world live longer, chronic illness and diminished well-being are becoming major global public health challenges. Marine biotechnology may help overcome some of these challenges by developing new products and know-how derived from marine organisms. While some products from marine organisms such as microalgae, sponges, and fish have already found biotechnological applications, jellyfish have received little attention as a potential source of bioactive compounds. Nevertheless, recent studies have highlighted that scyphomedusae (Cnidaria, Scyphozoa) synthesise at least three main categories of compounds that may find biotechnological applications: collagen, fatty acids and components of crude venom. We review what is known about these compounds in scyphomedusae and their current biotechnological applications, which falls mainly into four categories of products: nutraceuticals, cosmeceuticals, biomedicals, and biomaterials. By defining the state of the art of biotechnological applications in scyphomedusae, we intend to promote the use of these bioactive compounds to increase the health and well-being of future societies.
The world’s population growth and consequent increased demand for food, energy and materials together with the decrease of some natural resources have highlighted the compelling need to use sustainably existing resources and find alternative sources to satisfy the needs of growing and longer-aging populations. In this review, we explore the potential use of a specific fisheries by-catch, jellyfish, as a sustainable source of high-value compounds. Jellyfish are often caught up with fish into fishing gear and nets, then sorted and discarded. Conversely, we suggest that this by-catch may be used to obtain food, nutraceutical products, collagen, toxins and fluorescent compounds to be used for biomedical applications and mucus for biomaterials. These applications are based on studies which indicate the feasibility of using jellyfish for biotechnology. Because jellyfish exhibit seasonal fluctuations in abundance, jellyfish by-catches likely follow the same pattern. Therefore, this resource may not be constantly available throughout the year, so the exploitation of the variable abundances needs to be optimized. Despite the lack of data about jellyfish by-catches, the high value of their compounds and their wide range of applications suggest that jellyfish by-catches are a resource which is discarded at present, but needs to be re-evaluated for exploitation within the context of a circular economy in the era of zero waste.
Ecologists and evolutionary biologists have been looking for the key(s) to the success of scyphomedusae through their long evolutionary history in multiple habitats. Their ability to generate young medusae (ephyrae) via two distinct reproductive strategies, strobilation or direct development from planula into ephyra without a polyp stage, has been a potential explanation. In addition to these reproductive modes, here we provide evidence of a third ephyral production which has been rarely observed and often confused with direct development from planula into ephyra. Planulae of Aurelia relicta Scorrano et al. 2017 and Cotylorhiza tuberculata (Macri 1778) settled and formed fully-grown polyps which transformed into ephyrae within several days. In distinction to monodisk strobilation, the basal polyp of indirect development was merely a non-tentaculate stalk that dissolved shortly after detachment of the ephyra. We provide a fully detailed description of this variant that increases reproductive plasticity within scyphozoan life cycles and is different than either true direct development or the monodisk strobilation. Our observations of this pattern in co-occurrence with mono- and polydisk strobilation in Aurelia spp. suggest that this reproductive mode may be crucial for the survival of some scyphozoan populations within the frame of a bet-hedging strategy and contribute to their long evolutionary success throughout the varied conditions of past and future oceans.
Plankton plays a key role in marine food webs by producing and transferring organic matter and energy to higher trophic levels. To define the trophic structure and interactions within the planktonic communities in the Gulf of Naples, we determined carbon and nitrogen stable isotope ratios in particulate organic matter (POM, <20 μm), phytoplankton (20–200 μm), and bulk (unsorted) and sorted mesozooplankton (200–2000 μm) on a weekly basis in 2019. The stable isotope values of POM and, to a lesser extent, phytoplankton reflected the short‐term (weekly) alternation between offshore and coastal waters within seasonal variability. Although the isotopic signatures of coastal and offshore sources were still detectable in bulk mesozooplankton, δ13C and δ15N of single groups remained almost unchanged throughout the year. The trophic niches of mesozooplankton groups defined using the Stable Isotope Bayesian Ellipses in R software showed a high degree of overlap among them, which was corroborated by the tendency of most groups toward omnivory, beyond their known feeding habits, as indicated by MixSIAR models. Collectively, our results highlight that the complex network of interactions within the planktonic community in the Gulf of Naples can buffer natural variability due to the specific hydrographic features of the system. This characteristic makes the trophic structure of this community an ideal model for monitoring the response of planktonic food webs to climate‐ and anthropic‐driven changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.