Language and spatial processing are cognitive functions that are asymmetrically distributed across both cerebral hemispheres. In the present study, we compare left- and right-handers on word comprehension using a divided visual field paradigm and spatial attention using a landmark task. We investigate hemispheric asymmetries by assessing the participants’ behavioral metrics; response accuracy, reaction time and their laterality index. The data showed that right-handers benefitted more from left-hemispheric lateralization for language comprehension and right-hemispheric lateralization for spatial attention than left-handers. Furthermore, left-handers demonstrated a more variable distribution across both hemispheres, supporting a less focal profile of functional brain organization. Taken together, the results underline that handedness distinctively modulates hemispheric processing and behavioral performance during verbal and nonverbal tasks. In particular, typical lateralization is most prevalent for right-handers whereas atypical lateralization is more evident for left-handers. These insights contribute to the understanding of individual variation of brain asymmetries and the mechanisms related to changes in cerebral dominance.
Time is a fundamental dimension of our behavior and enables us to guide our actions and to experience time such as predicting collisions or listening to music. In this study, we investigate the regulation and covariation of motor timing and time perception functions in left- and right-handers who are characterized by distinct brain processing mechanisms for cognitive-motor control. To this purpose, we use a combination of tasks that assess the timed responses during movements and the perception of time intervals. The results showed a positive association across left- and right-handers between movement-driven timing and perceived interval duration when adopting a preferred tempo, suggesting cross-domain coupling between both abilities when an intrinsic timescale is present. Handedness guided motor timing during externally-driven conditions that required cognitive intervention, which specifies the relevance of action expertise for the performance of timed-based motor activities. Overall, our results reveal that individual variation across domain-general and domain-specific levels of organization plays a steering role in how one predicts, perceives and experiences time, which accordingly impacts on cognition and behavior.
Hemispheric lateralisation is a fundamental principle of functional brain organisation. We studied two core cognitive functions—language and visuospatial attention—that typically lateralise in opposite cerebral hemispheres. In this work, we tested both left- and right-handed participants on lexical decision-making as well as on symmetry detection by means of a visual half-field paradigm with various target–distractor combinations simultaneously presented to opposite visual fields. Laterality indexes were analysed using a behavioural metrics in single individuals as well as between individuals. We observed that lateralisation of language and visuospatial attention as well as their relationship generally followed a left–right profile, albeit with differences as a function of handedness and target–distractor combination. In particular, right-handed individuals tended towards a typical pattern whereas left-handed individuals demonstrated increased individual variation and atypical organisation. That the atypical variants varied as a function of target–distractor combination and thus interhemispheric communication underlines its dynamic role in characterising lateralisation properties. The data further revealed distinctive relationships between right-handedness and left-hemispheric dominance for language together with right-hemispheric dominance for visuospatial processing. Overall, these findings illustrate the role of broader mechanisms in supporting hemispheric lateralisation of cognition and behaviour, relying on common principles but controlled by internal and external factors.
Adaptive behaviour requires cognitive control for shielding current goals from distractors (stability) but at the same time for switching between alternative goals (flexibility). In this behavioural study, we examine the stability-flexibility balance in left- and right-handers during two types of decision-making, instructed (sensory cued) and voluntary (own choice), by means of distractor inhibition and hand/task switching. The data revealed that both groups showed opposite tendencies for instructed decision-making. Moreover, right-handers resisted distracting information more efficiently whereas left-handers showed superior switching abilities. When participants were involved in voluntary decision-making, no effects of handedness were noted, which suggests that free-choice processing alters the balance between stability and flexibility. These data illustrate that handedness is an index of individual variation during instructed decision-making, biasing the proficiency of cognitive control towards stability and flexibility of information processing. These biases can however be overruled by top-down strategies that dominate during voluntary decision-making. Overall, the research underlines the antagonistic functions of stability and flexibility in decision-making, and offers an approach for examining cognitive control and the role of internal and external factors in balancing the stability-flexibility trade-off.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.