Following injury, dorsal root ganglion (DRG) neurons undergo transcriptional changes so as to adopt phenotypic changes that promote cell survival and axonal regeneration. Here we used a microarray approach to profile changes in a population of small noncoding RNAs known as microRNAs (miRNAs) in the L4 and L5 DRG following sciatic nerve transection. Results showed that 20 miRNA transcripts displayed a significant change in expression levels, with 8 miRNAs transcripts being altered by more than 1.5-fold. Using quantitative reverse transcription PCR, we demonstrated that one of these miRNAs, miR-21, was upregulated by 7-fold in the DRG at 7 days post-axotomy. In dissociated adult rat DRG neurons lentiviral vector-mediated overexpression of miR-21 promoted neurite outgrowth on a reduced laminin substrate. miR-21 directly downregulated expression of Sprouty2 protein, as confirmed by Western blot analysis and 3′ untranslated region (UTR) luciferase assays. Our data show that miR-21 is an axotomy-induced miRNA that enhances axon growth, and suggest that miRNAs are important players in regulating growth pathways following peripheral nerve injury.
IntroductionAlthough preterm birth is associated with respiratory morbidity in childhood, the role of family history of atopy and whether appropriate treatment has been instituted is unclear. Thus we assessed (i) the prevalence of respiratory symptoms, particularly wheezing, in childhood; (ii) evaluated the role of family history of atopy and mode of delivery, and (iii) documented the drug usage, all in preterm-born children compared to term-born control children.MethodsWe conducted a cross-sectional population-based questionnaire study of 1–10 year-old preterm-born children (n = 13,361) and matched term-born controls (13,361). Data (n = 7,149) was analysed by gestational groups (24–32 weeks, 33–34 weeks, 35–36 weeks and 37–43 weeks) and by age, <5 years old or ≥ 5 years.Main ResultsPreterm born children aged <5 years (n = 2,111, term n = 1,402) had higher rates of wheeze-ever [odds ratio: 2.7 (95% confidence intervals 2.2, 3.3); 1.8 (1.5, 2.2); 1.5 (1.3, 1.8) respectively for the 24–32 weeks, 33–34 weeks, 35–36 weeks groups compared to term]. Similarly for the ≥5 year age group (n = 2,083, term n = 1,456) wheezing increased with increasing prematurity [odds ratios 3.3 (2.7, 4.1), 1.8 (1.5, 2.3) and 1.6 (1.3, 1.9) for the three preterm groups compared to term]. At both age groups, inhaler usage was greater in the lowest preterm group but prematurity-associated wheeze was independent of a family history of atopy.ConclusionsIncreasing prematurity was associated with increased respiratory symptoms, which were independent of a family history of atopy. Use of bronchodilators was also increased in the preterm groups but its efficacy needs careful evaluation.
Corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) are expressed in cells of the immune system where they exert immunomodulatory roles, but these neuropeptides are poorly characterized in human immune tissues. The aim of this study was to determine concentrations and distribution of CRH and AVP in nonactivated human peripheral blood mononuclear cells (PBMC). PBMC from normal human subjects were separated into enriched subpopulations of T and B cells and monocytes/macrophages by a magnetic bead/monoclonal antibody technique. CRH and AVP were measured in cell extracts by radioimmunoassay (RIA). CRH-immunoreactivity (ir) ranged 0.24-0.8 fmol/million cells (n = 6 subjects) in T cell extracts, 0.4-2.7 fmol/million cells (n = 4) in B cells and 0.63-2.16 fmol/million cells (n = 4) in macrophages. AVP-ir ranged 0.2-0.95 fmol/million cells in T cell extracts, <0.1-0.8 fmol/million cells in B cells and 0.14-3.19 fmol/million cells in macrophages. Reversed-phase high-performance liquid chromatography (HPLC) of T and B cell extracts revealed a peak of CRH-ir which coeluted with synthetic CRH-41; this peak was not present in macrophages. A second peak of CRH-ir which eluted in a more hydrophobic position was observed in extracts of T and B cells and macrophages. This unidentified form of CRH-ir is the predominant form of CRH-ir in nonactivated human PBMC. This is the first study to demonstrate that CRH-ir and AVP-ir are colocalized within human T cells, B cells and monocytes/macrophages. We have confirmed observations of a variant form of CRH-ir in human PBMC and show that this is the predominant form in macrophages and B cells whereas CRH-ir, which coelutes with CRH(1-41) on HPLC, is present in significant amounts only in T cells. These data also confirm that CRH-ir in human PBMC is not urocortin because the antiserum used in the CRH RIA does not bind to urocortin.
Objective. Pain sensitization and the related secretion of neuropeptides from sensory nerve terminals are proinflammatory in osteoarthritis (OA), rheumatoid arthritis (RA), and adjuvant-induced polyarthritis. In contrast, endogenous opioids such as the recently discovered endomorphins (EMs) are antiinflammatory. However, the role of endogenous EMs such as EM-1 and EM-2 has never been investigated in OA and RA.Methods. We established a highly sensitive radioimmunoassay to detect EM-1 and EM-2. In patients with RA and patients with OA, immunohistochemistry for EM-1 and EM-2 was performed, and double-staining was used to identify EM-positive cells. The effects of EM-1 and EM-2 on the secretion of interleukin-6 (IL-6) and IL-8 from human synovial tissue were studied by tissue superfusion, and the therapeutic effects of EM-1 were tested in a rat model of adjuvant-induced polyarthritis.Results. EM-positive cells were located in the sublining area and vessel walls but were particularly evident in the highly inflamed lining area. Human macrophages, T cells, and fibroblasts stained positive for EMs. The synovial density of EM-positive cells was higher in patients with OA than in those with RA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.