Palladium nanoparticles have been immobilized into an amino-functionalized metal–organic framework (MOF), MIL-101Cr-NH
2
, to form Pd@MIL-101Cr-NH
2
. Four materials with different loadings of palladium have been prepared (denoted as 4-, 8-, 12-, and 16 wt %Pd@MIL-101Cr-NH
2
). The effects of catalyst loading and the size and distribution of the Pd nanoparticles on the catalytic performance have been studied. The catalysts were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, powder X-ray diffraction (PXRD), N
2
-sorption isotherms, elemental analysis, and thermogravimetric analysis (TGA). To better characterize the palladium nanoparticles and their distribution in MIL-101Cr-NH
2
, electron tomography was employed to reconstruct the 3D volume of 8 wt %Pd@MIL-101Cr-NH
2
particles. The pair distribution functions (PDFs) of the samples were extracted from total scattering experiments using high-energy X-rays (60 keV). The catalytic activity of the four MOF materials with different loadings of palladium nanoparticles was studied in the Suzuki–Miyaura cross-coupling reaction. The best catalytic performance was obtained with the MOF that contained 8 wt % palladium nanoparticles. The metallic palladium nanoparticles were homogeneously distributed, with an average size of 2.6 nm. Excellent yields were obtained for a wide scope of substrates under remarkably mild conditions (water, aerobic conditions, room temperature, catalyst loading as low as 0.15 mol %). The material can be recycled at least 10 times without alteration of its catalytic properties.
Two families of metal−organic frameworks (MOFs), MIL-88 and MIL-101 built by trinuclear transition metal (TM) clusters (TM = Cr, Fe, or Sc), have been known for several years, but their syntheses are often reported separately. In fact, these MOFs are polymorphs, or framework isomers: they are assembled from the same metal secondary building units and organic linkers, but the connectivity of these components differs. Here we report for the first time the synthesis of the vanadium MOF MIL-88B(V) and compare its synthesis parameters to those of MIL-47(V) and the recently reported MIL-101(V). The properties of MIL-88B(V) and MIL-101(V) are remarkably different. MIL-88B(V) can "breathe" and is responsive to different solvents, while MIL-101(V) is rigid and contains mesoporous cages. MIL-101(V) exhibits the highest specific surface area among vanadium MOFs discovered so far. In addition, both MIL-88B(V) and MIL-101(V) transform to MIL-47 at higher temperatures. We have also identified the key synthesis parameters that control the formation of MIL-88B(V), MIL-101(V), and MIL-47: temperature, time, and pH. This relates to the rate of reaction between the metal and linkers, which has been monitored by ex situ X-ray powder diffraction and V K-edge X-ray absorption spectroscopy during MOF synthesis. It is therefore important to fully study the synthesis conditions to improve our understanding of framework isomerism in MOFs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.