Vibrio vulnificus and Vibrio parahaemolyticus are ubiquitous Gram-negative bacterial pathogens found naturally in marine and estuarine waters, and are a leading cause of seafood-associated bacterial illness. These pathogens are commonly reported in the USA and in many Asian countries, including China, Japan and Taiwan; however, there is growing concern that V. vulnificus and V. parahaemolyticus may represent an important and increasing clinical problem in Europe. Several factors underlie the need for a greater understanding of these non-cholera vibrios within a European context. First, there is a growing body of evidence to suggest that V. vulnificus and V. parahaemolyticus infections are increasing, and tend to follow regional climatic trends, with outbreaks typically following episodes of unusually warm weather. Such findings are especially alarming given current predictions regarding warming of marine waters as a result of global climatic change. Second, a myriad of epidemiological factors may greatly increase the incidence as well as clinical burden of these pathogens - including increasing global consumption and trade of seafood produce coupled to an increase in the number of susceptible individuals consuming seafood produce. Finally, there is currently a lack of detailed surveillance information regarding non-cholerae Vibrio infections in Europe, as these pathogens are not notifiable in many countries, which probably masks the true clinical burden of many human infections. This review will present a pertinent overview of both the environmental occurrence and clinical impact of V. vulnificus and V. parahaemolyticus in Europe.
Globally, vibrios represent an important and well-established group of bacterial foodborne pathogens. The European Commission (EC) mandated the Comite de European Normalisation (CEN) to undertake work to provide validation data for 15 methods in microbiology to support EC legislation. As part of this mandated work programme, merging of ISO/TS 21872-1:2007, which specifies a horizontal method for the detection of V. parahaemolyticus and V. cholerae, and ISO/TS 21872-2:2007, a similar horizontal method for the detection of potentially pathogenic vibrios other than V. cholerae and V. parahaemolyticus was proposed. Both parts of ISO/TS 21872 utilized classical culture-based isolation techniques coupled with biochemical confirmation steps. The work also considered simplification of the biochemical confirmation steps. In addition, because of advances in molecular based methods for identification of human pathogenic Vibrio spp. classical and real-time PCR options were also included within the scope of the validation. These considerations formed the basis of a multi-laboratory validation study with the aim of improving the precision of this ISO technical specification and providing a single ISO standard method to enable detection of these important foodborne Vibrio spp.. To achieve this aim, an international validation study involving 13 laboratories from 9 countries in Europe was conducted in 2013. The results of this validation have enabled integration of the two existing technical specifications targeting the detection of the major foodborne Vibrio spp., simplification of the suite of recommended biochemical identification tests and the introduction of molecular procedures that provide both species level identification and discrimination of putatively pathogenic strains of V. parahaemolyticus by the determination of the presence of theromostable direct and direct related haemolysins. The method performance characteristics generated in this have been included in revised international standard, ISO 21872:2017, published in July 2017.
Knowledge of the fate of human noroviruses (NoV) in the marine environment is key to better controlling shellfish-related NoV gastroenteritis. We quantified NoV and Escherichia coli in sewage from storm tank discharges and treated effluent processed by a UV-disinfection plant following activated sludge treatment and studied the fate of these microorganisms in an oyster harvesting area impacted by frequent stormwater discharges and infrequent freshwater discharges. Oyster monitoring sites were positioned at intervals downstream from the wastewater treatment works (WwTW) outfall impacting the harvesting area. The decay rates of NoV in oysters as a function of the distance from the outfall were less rapid than those for E. coli that had concentrations of NoV of the same order of magnitude and were over 7 km away from the outfall. Levels of E. coli in oysters from more tidally influenced areas of the estuary were higher around high water than around low water, whereas tidal flows had no influence on NoV contamination in the oysters. The study provides comparative data on the contamination profiles and loadings of NoV and E. coli in a commercial oyster fishery impacted by a WwTW.
Objective Clinical research has faced new challenges during the COVID-19 pandemic, leading to excessive operational demands affecting all stakeholders. We evaluated the impact of COVID-19 on clinical research strategies and compared different adaptations by regulatory bodies and academic research institutions in a global context, exploring what can be learned for possible future pandemics. Methods We conducted a cross-sectional online survey and identified and assessed different COVID-19-specific adaptation strategies used by academic research institutions and regulatory bodies. Results All 19 participating academic research institutions developed and followed similar strategies, including preventive measures, manpower recruitment, and prioritisation of COVID-19 projects. In contrast, measures for centralised management or coordination of COVID-19 projects, project preselection, and funding were handled differently amongst institutions. Regulatory bodies responded similarly to the pandemic by implementing fast-track authorisation procedures for COVID-19 projects and developing guidance documents. Quality and consistency of the information and advice provided was rated differently amongst institutions. Conclusion Both academic research institutions and regulatory bodies worldwide were able to cope with challenges during the COVID-19 pandemic by developing similar strategies. We identified some unique approaches to ensure fast and efficient responses to a pandemic. Ethical concerns should be addressed in any new decision-making process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.