The location of the plane is key during the landing operation. A set of sensors provides data to get the best estimation of plane localization. However, data can contain anomalies. To guarantee correct behavior of the sensors, anomalies must be detected. Then, either the faulty sensor is isolated or the detected anomaly is filtered. This article presents a new neural algorithm for the detection and correction of anomalies named NADCA. This algorithm uses a compact deep learning prediction model and has been evaluated using real and simulated anomalies in real landing signals. NADCA detects and corrects both fast-changing and slow-moving anomalies; it is robust regardless of the degree of oscillation of the signals and sensors with abnormal behavior do not need to be isolated. NADCA can detect and correct anomalies in real time regardless of sensor accuracy. Likewise, NADCA can deal with simultaneous anomalies in different sensors and avoid possible problems of coupling between signals. From a technical point of view, NADCA uses a new prediction method and a new approach to obtain a smoothed signal in real time. NADCA has been developed to detect and correct anomalies during the landing of an airplane, hence improving the information presented to the pilot. Nevertheless, NADCA is a general-purpose algorithm that could be useful in other contexts. NADCA evaluation has given an average F-score value of 0.97 for anomaly detection and an average root mean square error (RMSE) value of 2.10 for anomaly correction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.