Three new fungicides (i.e., azoxystrobin, fludioxonil, and pyrimethanil) are currently being introduced for postharvest management of citrus green mold in the United States. The effectiveness of each fungicide was evaluated when applied alone (at 1,000 to 1,200 mg/liter) or in mixtures (at 500 mg/liter each component) to lemon fruit that were wound-inoculated with imazalil/thiabendazole (TBZ)-sensitive or -resistant isolates of Penicillium digitatum. In laboratory studies when aqueous fungicide solutions were applied 9 to 21 h after inoculation, pyrimethanil showed the highest level of green mold control. The efficacy of fludioxonil and azoxystrobin was very high at the early timings, but decreased as time after inoculation increased. Differences in fungicide performance were not due to multiple fungicide resistance, but more likely due to differences in fungicide mobility in fruit tissue. Azoxystrobin-fludioxonil mixtures were significantly more effective when compared to single-fungicide treatments. Mixtures of imazalil with pyrimethanil were the most effective in controlling decay. The efficacy of all fungicides was significantly lower when mixed into a packing fruit coating as compared to aqueous or storage fruit coating applications. In laboratory and packingline studies, the lowest incidence of green mold decay was obtained when azoxystrobin-fludioxonil and imazalil-pyrimethanil were applied as aqueous solutions that were followed by a fruit coating. Among the new fungicides, azoxystrobin and fludioxonil applied in water or storage fruit coating, respectively, provided the best anti-sporulation activity. Storage fruit coating improved the activity of both fungicides. Pyrimethanil was the least effective fungicide in suppressing sporulation of the pathogen on decaying fruit. Overall, among the mixtures, azoxystrobin-fludioxonil and TBZ-fludioxonil had high anti-sporulation activity in aqueous and storage fruit coating applications. New integrated management programs should be based on monitoring of fungicide sensitivities in pathogen populations, rotating mixtures of products with different modes of action, and using appropriate fungicide application strategies.
Genetic and biochemical mechanisms of fludioxonil and pyrimethanil resistance in isolates of Penicillium digitatum were evaluated and compared to those characterized in other fungi. Resistant isolates were naturally occurring in packinghouses and were not associated with crop losses. For the phenylpyrrole fludioxonil, EC50 values were 0.02 to 0.04 microg/ml for sensitive, 0.08 to 0.65 microg/ml for moderately resistant (MR), and > 40 microg/ml for highly resistant (HR) isolates. Two fludioxonil-sensitive isolates evaluated were also significantly more sensitive to the unrelated dicarboximide fungicide iprodione, that also disrupts osmotic regulation, than the MR and HR isolates. There was no consistent relationship, however, between the HR and MR isolates and their sensitivity to iprodione or osmotic stress. Although, two nucleotide substitutions were found in a sequence analysis of the N-terminal amino acid repeat region of the os-1-related histidine kinase gene among isolates of P. digitatum, these were not correlated with fludioxonil resistance. In mycelia not exposed to fludioxonil, the amount of phosphorylated OS-2-related protein (PdOS-2) was higher in fludioxonil-sensitive isolates and lowest in the HR isolate. An increase in PdOS-2 was observed for sensitive and resistant isolates after exposure to fludioxonil. In addition, glycerol content in untreated mycelia of the fludioxonil-sensitive isolate was significantly higher than in resistant isolates. After exposure to fludioxonil, glycerol concentrations significantly increased in the sensitive and MR isolates, but not in the HR isolate. Thus, our studies indicate that the mode of action of fludioxonil in P. digitatum is probably the mitogen-activated protein kinase pathway that stimulates glycerol synthesis in sensitive and MR isolates. The general suppression of this pathway in resistant isolates was supported by the fact that growth and sporulation of MR and HR isolates were significantly reduced from that of sensitive isolates. In studies on the mode of action of anilinopyrimidines (AP), EC50 values for mycelial growth of P. digitatum and the previously characterized Botrytis cinerea were determined for cyprodinil and pyrimethanil using a defined culture medium without and with the addition of selected amino acids and homocysteine. The addition of amino acids resulted in a reduced toxicity of the two AP fungicides in both fungi, but the effect of each additive was significantly lower for P. digitatum than for B. cinerea. This suggests that methionine biosynthesis is not the primary target site of APs in P. digitatum.
Plant pathogenic fungi are considered of significant economic importance for adversely affecting both quantitatively and qualitatively fresh and processed produce. Extracts of Salvia fruticosa were initially screened for their antifungal activity, and the ethyl acetate fraction, being the most active, was further analyzed using HPLC-SPE-NMR hyphenation. The methoxylated flavones hispidulin, salvigenin, and cirsimaritin and the diterpenes carnosic acid, carnosol, and 12-methoxycarnosic acid were identified as the major components of the extract. In addition, the concentration levels of all identified components were determined using q-NMR. The antifungal activity of the crude extract and selected phytochemicals was estimated against the fungal species Aspergillus tubingensis, Botrytis cinerea, and Penicillium digitatum. The estimated MIC and MFC values of the ethyl acetate extract of S. fruticosa, as well as three of its major constituents, carnosic acid, carnosol, and hispidulin, support their antifungal activity, especially against B. cinerea and P. digitatum, suggesting their potential use in food and agricultural systems.
This article documents the addition of 512 microsatellite marker loci and nine pairs of Single Nucleotide Polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Alcippe morrisonia morrisonia, Bashania fangiana, Bashania fargesii, Chaetodon vagabundus, Colletes floralis, Coluber constrictor flaviventris, Coptotermes gestroi, Crotophaga major, Cyprinella lutrensis, Danaus plexippus, Fagus grandifolia, Falco tinnunculus, Fletcherimyia fletcheri, Hydrilla verticillata, Laterallus jamaicensis coturniculus, Leavenworthia alabamica, Marmosops incanus, Miichthys miiuy, Nasua nasua, Noturus exilis, Odontesthes bonariensis, Quadrula fragosa, Pinctada maxima, Pseudaletia separata, Pseudoperonospora cubensis, Podocarpus elatus, Portunus trituberculatus, Rhagoletis cerasi, Rhinella schneideri, Sarracenia alata, Skeletonema marinoi, Sminthurus viridis, Syngnathus abaster, Uroteuthis (Photololigo) chinensis, Verticillium dahliae, Wasmannia auropunctata, and Zygochlamys patagonica. These loci were cross-tested on the following species: Chaetodon baronessa, Falco columbarius, Falco eleonorae, Falco naumanni, Falco peregrinus, Falco subbuteo, Didelphis aurita, Gracilinanus microtarsus, Marmosops paulensis, Monodelphis Americana, Odontesthes hatcheri, Podocarpus grayi, Podocarpus lawrencei, Podocarpus smithii, Portunus pelagicus, Syngnathus acus, Syngnathus typhle,Uroteuthis (Photololigo) edulis, Uroteuthis (Photololigo) duvauceli and Verticillium albo-atrum. This article also documents the addition of nine sequencing primer pairs and sixteen allele specific primers or probes for Oncorhynchus mykiss and Oncorhynchus tshawytscha; these primers and assays were cross-tested in both species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.