Abstract-We address the problem of secure location determination, known as Secure Localization, and the problem of verifying the location claim of a node, known as Location Verification, in Wireless Sensor Networks (WSN). We propose a robust positioning system we call ROPE that allows sensors to determine their location without any centralized computation. In addition, ROPE provides a location verification mechanism that verifies the location claims of the sensors before data collection. We show that ROPE bounds the ability of an attacker to spoof sensors' locations, with relatively low density deployment of reference points. We confirm the robustness of ROPE against attacks analytically and via simulations.
Wireless ad hoc networks are envisioned to be randomly deployed in versatile and potentially hostile environments. Hence, providing secure and uninterrupted communication between the un-tethered network nodes becomes a critical problem. In this paper, we investigate the wormhole attack in wireless ad hoc networks, an attack that can disrupt vital network functions such as routing. In the wormhole attack, the adversary establishes a low-latency unidirectional or bi-directional link, such as a wired or long-range wireless link, between two points in the network that are not within communication range of each other. The attacker then records one or more messages at one end of the link, tunnels them via the link to the other end, and replays them into the network in a timely manner. The wormhole attack is easily implemented and particularly challenging to detect, since it does not require breach of the authenticity and confidentiality of communication, or the compromise of any host. We present a graph theoretic framework for modeling wormhole links and derive the necessary and sufficient conditions for detecting and defending against wormhole attacks. Based on our framework, we show that any candidate solution preventing wormholes should construct a communication graph that is a subgraph of the geometric graph defined by the radio range of the network nodes. Making use of our framework, we propose a cryptographic mechanism based on local broadcast keys in order to prevent wormholes. Our solution does not need time synchronization or time measurement, requires only a small fraction of the nodes to know their location, and is decentralized. Hence, it is suitable for networks with the most stringent constraints such as sensor networks. Fi-R. Poovendran ( )· L. Lazos
Abstract-In this paper we address the problem of robustly estimating the position of randomly deployed nodes of a Wireless Sensor Network (WSN), in the presence of security threats. We propose a range-independent localization algorithm called HiRLoc, that allows sensors to passively determine their location with high resolution, without increasing the number of reference points, or the complexity of the hardware of each reference point. In HiRLoc, sensors determine their location based on the intersection of the areas covered by the beacons transmitted by multiple reference points. By combining the communication range constraints imposed by the physical medium with computationally efficient cryptographic primitives that secure the beacon transmissions, we show that HiRLoc is robust against known attacks on WSN, such as the wormhole attack, the Sybil attack and compromise of network entities. Finally, our performance evaluation shows that HiRLoc leads to a significant improvement in localization accuracy compared to state-of-the-art rangeindependent localization schemes, while requiring fewer reference points.
We address the problem of control-channel jamming attacks in multi-channel ad hoc networks. Deviating from the traditional view that sees jamming attacks as a physical-layer vulnerability, we consider a sophisticated adversary who exploits knowledge of the protocol mechanics along with cryptographic quantities extracted from compromised nodes to maximize the impact of his attack on higher-layer functions. We propose new security metrics that quantify the ability of the adversary to deny access to the control channel, and the overall delay incurred in re-establishing the control channel. We also propose a randomized distributed scheme that allows nodes to establish a new control channel using frequency hopping. Our method differs from classic frequency hopping in that no two nodes share the same hopping sequence, thus mitigating the impact of node compromise. Furthermore, a compromised node is uniquely identified through its hop sequence, leading to its isolation from any future information regarding the frequency location of the control channel.
We study the problem of coverage in planar heterogeneous sensor networks. Coverage is a performance metric that quantifies how well a field of interest is monitored by the sensor deployment. To derive analytical expressions of coverage for heterogeneous sensor networks, we formulate the coverage problem as a set intersection problem, a problem studied in integral geometry. Compared to previous analytical results, our formulation allows us to consider a network model where sensors are deployed according to an arbitrary stochastic distribution; sensing areas of sensors need not follow the unit disk model but can have any arbitrary shape; sensors need not have an identical sensing capability. Furthermore, our formulation does not assume deployment of sensors over an infinite plane and, hence, our derivations do not suffer from the border effect problem arising in a bounded field of interest. We compare our theoretical results with the spatial Poisson approximation that is widely used in modeling coverage. By computing the Kullback-Leibler and total variation distance between the probability density functions derived via our theoretical results, the Poisson approximation, and the simulation, we show that our formulas provide a more accurate representation of the coverage in sensor networks. Finally, we provide examples of calculating network parameters such as the network size and sensing range in order to achieve a desired degree of coverage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.