G-quadruplexes, a family of tetraplex helical nucleic acid topologies, have emerged in recent years as novel targets, with untapped potential for anticancer research. Their potential stems from the fact that G-quadruplexes occur in functionally-important regions of the human genome, such as the telomere tandem sequences, several proto-oncogene promoters, other regulatory regions and sequences of DNA (e.g. rDNA), as well as in mRNAs encoding for proteins with roles in tumorigenesis. Modulation of G-quadruplexes, via interaction with high-affinity ligands, leads to their stabilization, with numerous observed anticancer effects. Despite the fact that only a few lead compounds for G-quadruplex modulation have progressed to clinical trials so far, recent advancements in the field now create conditions that foster further development of drug candidates. This review highlights biological processes through which G-quadruplexes can exert their anticancer effects and describes, via selected case studies, progress of the last few years on the development of efficient and drug-like G-quadruplex-targeted ligands, intended to harness the anticancer potential offered by G-quadruplexes. The review finally provides a critical discussion of perceived challenges and limitations that have previously hampered the progression of G-quadruplex-targeted lead compounds to clinical trials, concluding with an optimistic future outlook.
Organometallic molecules offer some of the most promising scaffolds for interaction with G-quadruplex nucleic acids. We report the efficient synthesis of a family of organoplatinum(II) complexes, featuring a 2-([2,2'-bipyridin]-6-yl)phenyl tridentate (N ∧ N ∧ C) ligand, that incorporates peripheral side-chains aiming at enhancing and diversifying its interaction capabilities. These include a di-isopropyl carbamoyl amide, a morpholine ethylenamide, two enantiomeric proline imides and an oxazole. The binding affinities of the Pt-complexes were evaluated via UV-vis and fluorescence titrations, against 5 topologically-distinct DNA structures, including c-myc G-quadruplex, two telomeric (22AG) Gquadruplexes, a duplex (ds26) and a single-stranded (polyT) DNA. All compounds exhibited binding selectivity in favour of c-myc, with association constants (K a ) in the range of 2-5 × 10 5 M À 1 , lower affinity for both folds of 22AG and for ds26 and negligible affinity for polyT. Remarkable emission enhancements (up to 200-fold) upon addition of excess DNA were demonstrated by a subset of the compounds with c-myc, providing a basis for optical selectivity, since optical response to all other tested DNAs was low. A c-myc DNAmelting experiment showed significant stabilizing abilities for all compounds, with the most potent binder, the morpholine-Pt-complex, exhibiting a ΔT m > 30 °C, at 1 : 5 DNA-to-ligand molar ratio. The same study implied contributions of the diverse side-chains to helix stabilization. To gain direct evidence of the nature of the interactions, mixtures of c-myc with the four most promising compounds were studied via UV Resonance Raman (UVRR) spectroscopy, which revealed end-stacking binding mode, combined with interactions of side-chains with loop nucleobase residues. Docking simulations were conducted to provide insights into the binding modes for the same four Pt-compounds, suggesting that the binding preference for two alternative orientations of the cmyc G-quadruplex thymine 'cap' ('open' vs. 'closed'), as well as the relative contributions to affinity from end-stacking and H-bonding, are highly dependent on the nature of the interacting Pt-complex side-chain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.