Jatropha curcas L. has become an important source of oil production for biodiesel fuel. Most genetic studies of this plant have been conducted with Asian and African accessions, where low diversity was encountered. There are no studies of this kind focusing in the postulated region of origin. Therefore, five populations of J. curcas were studied in the state of Chiapas, Mexico, using amplified fragment length polymorphism (AFLP) markers. One hundred and fifty-two useful markers were obtained: overall polymorphism = 81.18% and overall Nei's genetic diversity (He) = 0.192. The most diverse population was the Border population [He: 0.245, Shanon's information index (I): 0.378]. A cluster analysis revealed the highest dissimilarity coefficient (0.893) yet to be reported among accessions. An analysis of molecular variance (AMOVA) revealed that the greatest variation is within populations (87.8%), followed by the variation among populations (7.88%). The PhiST value (0.121) indicated moderate differentiation between populations. However, a spatial AMOVA (SAMOVA) detected a stronger genetic structure
To investigate the genetic diversity and structure of Jatropha curcas L. oilseed plant, in this study, native populations from Chiapas, Mexico, were evaluated, using microsatellite DNA markers. A total of 93 representative samples were selected from seven sites in two regions in the state of Chiapas grouped by geographical proximity, where leaf samples were collected to isolate the genomic DNA. Individual polymerase chain reactions were carried out with ten pairs of specific oligonucleotides for the microsatellites of J. curcas, separating the products of amplification by acrylamide electrophoresis. Twenty-seven fragments were detected (77% polymorphic) with which heterozygous individuals were distinguished. The most informative microsatellite was Jcps20 (nine alleles, polymorphic index content 0.354). The average polymorphism per population was 58%. The Hardy -Weinberg tests revealed a reproductive pattern of non-random mating. The diversity descriptors and the analysis of molecular variance revealed that the populations were structured and moderately differentiated (F ST 0.087) and that this differentiation was not due to isolation by distance, as the Mantel test was not significant (P ¼ 0.137), but rather due to allopatry. Bayesian analysis revealed that the accessions belonged to only four genetic groups and confirmed the differentiation between the regions. Because some loci were in Hardy -Weinberg disequilibrium, it is proposed that differentiation is due to the clonal reproduction of J. curcas practised by farmers in Chiapas, along with the anthropogenic dispersion at regional levels. The results of this study reveal that J. curcas in Chiapas has genetic diversity that is greater than that reported in other parts of the world, which represents a potential germplasm pool for the selection of genotypes.
A genetic sexing strain of Anastrepha ludens (Loew), Tapachula-7, was developed by the Mexican Program Against Fruit Flies to produce and release only males in programs where the sterile insect technique (SIT) is applied. Currently, breeding are found at a massive scale, and it is necessary to determine the optimum irradiation dose that releases sterile males with minimum damage to their sexual competitiveness. Under laboratory and field conditions, we evaluated the effects of gamma irradiation at doses of 0, 20, 40, 60 and 80 Gy on the sexual competitiveness of males, the induction of sterility in wild females and offspring survivorship. The results of the study indicate that irradiation doses have a significant effect on the sexual behavior of males. A reduction of mating capacity was inversely proportional to the irradiation dose of males. It is estimated that a dose of 60 Gy can induce more than 99% sterility in wild females. In all treatments, the degree of offspring fertility was correlated with the irradiation dose of the parents. In conclusion, the results of the study indicate that a dose of 60 Gy can be applied in sterile insect technique release programs. The application of this dose in the new genetic sexing strain of A. ludens is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.