Jatropha curcas L. has become an important source of oil production for biodiesel fuel. Most genetic studies of this plant have been conducted with Asian and African accessions, where low diversity was encountered. There are no studies of this kind focusing in the postulated region of origin. Therefore, five populations of J. curcas were studied in the state of Chiapas, Mexico, using amplified fragment length polymorphism (AFLP) markers. One hundred and fifty-two useful markers were obtained: overall polymorphism = 81.18% and overall Nei's genetic diversity (He) = 0.192. The most diverse population was the Border population [He: 0.245, Shanon's information index (I): 0.378]. A cluster analysis revealed the highest dissimilarity coefficient (0.893) yet to be reported among accessions. An analysis of molecular variance (AMOVA) revealed that the greatest variation is within populations (87.8%), followed by the variation among populations (7.88%). The PhiST value (0.121) indicated moderate differentiation between populations. However, a spatial AMOVA (SAMOVA) detected a stronger genetic structure
To investigate the genetic diversity and structure of Jatropha curcas L. oilseed plant, in this study, native populations from Chiapas, Mexico, were evaluated, using microsatellite DNA markers. A total of 93 representative samples were selected from seven sites in two regions in the state of Chiapas grouped by geographical proximity, where leaf samples were collected to isolate the genomic DNA. Individual polymerase chain reactions were carried out with ten pairs of specific oligonucleotides for the microsatellites of J. curcas, separating the products of amplification by acrylamide electrophoresis. Twenty-seven fragments were detected (77% polymorphic) with which heterozygous individuals were distinguished. The most informative microsatellite was Jcps20 (nine alleles, polymorphic index content 0.354). The average polymorphism per population was 58%. The Hardy -Weinberg tests revealed a reproductive pattern of non-random mating. The diversity descriptors and the analysis of molecular variance revealed that the populations were structured and moderately differentiated (F ST 0.087) and that this differentiation was not due to isolation by distance, as the Mantel test was not significant (P ¼ 0.137), but rather due to allopatry. Bayesian analysis revealed that the accessions belonged to only four genetic groups and confirmed the differentiation between the regions. Because some loci were in Hardy -Weinberg disequilibrium, it is proposed that differentiation is due to the clonal reproduction of J. curcas practised by farmers in Chiapas, along with the anthropogenic dispersion at regional levels. The results of this study reveal that J. curcas in Chiapas has genetic diversity that is greater than that reported in other parts of the world, which represents a potential germplasm pool for the selection of genotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.