BackgroundThe evolutionary origin of cooperation among unrelated individuals remains a key unsolved issue across several disciplines. Prominent among the several mechanisms proposed to explain how cooperation can emerge is the existence of a population structure that determines the interactions among individuals. Many models have explored analytically and by simulation the effects of such a structure, particularly in the framework of the Prisoner's Dilemma, but the results of these models largely depend on details such as the type of spatial structure or the evolutionary dynamics. Therefore, experimental work suitably designed to address this question is needed to probe these issues.Methods and FindingsWe have designed an experiment to test the emergence of cooperation when humans play Prisoner's Dilemma on a network whose size is comparable to that of simulations. We find that the cooperation level declines to an asymptotic state with low but nonzero cooperation. Regarding players' behavior, we observe that the population is heterogeneous, consisting of a high percentage of defectors, a smaller one of cooperators, and a large group that shares features of the conditional cooperators of public goods games. We propose an agent-based model based on the coexistence of these different strategies that is in good agreement with all the experimental observations.ConclusionsIn our large experimental setup, cooperation was not promoted by the existence of a lattice beyond a residual level (around 20%) typical of public goods experiments. Our findings also indicate that both heterogeneity and a “moody” conditional cooperation strategy, in which the probability of cooperating also depends on the player's previous action, are required to understand the outcome of the experiment. These results could impact the way game theory on graphs is used to model human interactions in structured groups.
a b s t r a c tTwitter spam detection is a recent area of research in which most previous works had focused on the identification of malicious user accounts and honeypot-based approaches. However, in this paper we present a methodology based on two new aspects: the detection of spam tweets in isolation and without previous information of the user; and the application of a statistical analysis of language to detect spam in trending topics. Trending topics capture the emerging Internet trends and topics of discussion that are in everybody's lips. This growing microblogging phenomenon therefore allows spammers to disseminate malicious tweets quickly and massively. In this paper we present the first work that tries to detect spam tweets in real time using language as the primary tool. We first collected and labeled a large dataset with 34 K trending topics and 20 million tweets. Then, we have proposed a reduced set of features hardly manipulated by spammers. In addition, we have developed a machine learning system with some orthogonal features that can be combined with other sets of features with the aim of analyzing emergent characteristics of spam in social networks. We have also conducted an extensive evaluation process that has allowed us to show how our system is able to obtain an F-measure at the same level as the best state-ofthe-art systems based on the detection of spam accounts. Thus, our system can be applied to Twitter spam detection in trending topics in real time due mainly to the analysis of tweets instead of user accounts.
The size and complexity of actual networked systems hinders the access to a global knowledge of their structure. This fact pushes the problem of navigation to suboptimal solutions, one of them being the extraction of a coherent map of the topology on which navigation takes place. In this paper, we present a Markov chain based algorithm to tag networked terms according only to their topological features. The resulting tagging is used to compute similarity between terms, providing a map of the networked information. This map supports local-based navigation techniques driven by similarity. We compare the efficiency of the resulting paths according to their length compared to that of the shortest path. Additionally we claim that the path steps towards the destination are semantically coherent. To illustrate the algorithm performance we provide some results from the Simple English Wikipedia, which amounts to several thousand of pages. The simplest greedy strategy yields over an 80% of average success rate. Furthermore, the resulting content-coherent paths most often have a cost between one- and threefold compared to shortest-path lengths.
Word sense disambiguation is a key step for many natural language processing tasks (e.g. summarization, text classification, relation extraction) and presents a challenge to any system that aims to process documents from the biomedical domain. In this paper, we present a new graph-based unsupervised technique to address this problem. The knowledge base used in this work is a graph built with co-occurrence information from medical concepts found in scientific abstracts, and hence adapted to the specific domain. Unlike other unsupervised approaches based on static graphs such as UMLS, in this work the knowledge base takes the context of the ambiguous terms into account. Abstracts downloaded from PubMed are used for building the graph and disambiguation is performed using the personalized PageRank algorithm. Evaluation is carried out over two test datasets widely explored in the literature. Different parameters of the system are also evaluated to test robustness and scalability. Results show that the system is able to outperform state-of-the-art knowledge-based systems, obtaining more than 10% of accuracy improvement in some cases, while only requiring minimal external resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.