Inhibitory checkpoint blockade therapy is an immunomodulatory strategy that results in the restoration of T cell functions, and its efficacy depends on the recognition of tumor cells for destruction. Considering the factors at play, one could propose that anti-tumor responses will not occur if tumor cells are immunologically invisible to T cells. In this study, we tested a strategy based on the modulation of cancer cell's immunovisibility through HDAC inhibition. In a model (heterotopic and orthotopic) of mouse urothelial bladder cancer, we demonstrated that the use of intratumoral or intravesical HDACi in combination with systemic anti-PD-1 was effective at inducing curative responses with durable anti-tumor immunity capable of preventing tumor growth at a distal site. Mechanistically, we determined that protective responses were dependent on CD8 cells, but not NK cells. Of significance, in an in vitro human model, we found that fully activated T cells fail at killing bladder cancer cells unless tumor cells were pretreated with HDACi. Complementary to this observation, we found that HDACi cause gene deregulation, that results in the upregulation of genes responsible for mediating immunorecognition, NKG2D ligands and HSP70. Taken together, these data indicate that HDAC inhibition results in the elimination of the tumor cell's "invisibility cloak" that prevents T cells from recognizing and killing them. Finally, as checkpoint blockade therapy moves into the adjuvant setting, its combined use with locally administrated HDACi represents a new approach to be included in our current therapeutic treatment toolbox.
Background The development of memory responses is an evolutionary function of the adaptive immune system. We propose that for the immune system to populate the memory compartment with the best-suited CD8 T cells it utilizes a process of certification or molecular accreditation mediated through Natural Killer Group 2D (NKG2D). This process of certification assures that the memory compartment is filled with CD8 T cells that have demonstrated their ability to kill their cognate targets through a two-step process that utilizes T cell receptor (TCR) and NKG2D signaling. Methods One week after immunization with peptide-pulsed dendritic cells, NKG2D signaling was transiently blocked in vivo with a single injection of neutralizing antibodies. Under such conditions, we determined the importance of NKG2D signaling during the effector phase for memory formation without compromising NKG2D signaling at the memory phase . Both open (polyclonal) and closed (monoclonal) CD8 T cell repertoires were studied. Results We show that signaling through NKG2D mediated this certification. Temporary blockade of NKG2D signaling during the effector phase resulted in the formation of highly defective memory CD8 T cells characterized by altered expression of the ribosomal protein S6 and epigenetic modifiers, suggesting modifications in the T cell translational machinery and epigenetic programming. Finally, these uncertified memory cells were not protective against a B16 tumor challenge. Conclusion Signaling through NKG2D during the effector phase (certification) favors the development of functional memory CD8 T cells, a previously undescribed role for NKG2D. Temporary blockade of NKG2D signaling during the effector phase results in the formation of highly defective memory CD8 T cells potentially by affecting the expression of the ribosomal protein S6 and epigenetic modifiers, suggesting alterations in T cell translational machinery and epigenetic programming. Electronic supplementary material The online version of this article (10.1186/s40425-019-0531-2) contains supplementary material, which is available to authorized users.
Vitiligo is an acquired multifactorial disease that affects melanocytes and results in skin depigmentation. In this review, we examine the role of cells stress and self-reactive T cells responses. Given the canonical and non-canonical functions of NKG2D, such as authenticating stressed target and enhance TCR signaling, we examine how melanocyte stress leads to the expression of ligands that are recognized by the activating receptor NKG2D, and how its signaling results in the turning of T cells against self (melanocyte suicide by proxy). We also discuss how this initiation phase is followed by T cell perpetuation, as NKG2D signaling results in self-sustained long-lasting T cells, with improved cytolytic properties.
After exposure to an antigen, CD8 T cells reach a decision point about their fate: to become either short-lived effector cells (SLECs) or memory progenitor effector cells (MPECs). SLECs are specialized in providing an immediate effector function but have a shorter lifespan and lower proliferative capacity compared to MPECs. Upon encountering the cognate antigen during an infection, CD8 T cells rapidly expand and then contract to a level that is maintained for the memory phase after the peak of the response. Studies have shown that the contraction phase is mediated by TGFβ and selectively targets SLECs, while sparing MPECs. The aim of this study is to investigate how the CD8 T cell precursor stage determines TGFβ sensitivity. Our results demonstrate that MPECs and SLECs have differential responses to TGFβ, with SLECs being more sensitive to TGFβ than MPECs. This difference in sensitivity is associated with the levels of TGFβRI and RGS3, and the SLEC-related transcriptional activator T-bet binding to the TGFβRI promoter may provide a molecular basis for increased TGFβ sensitivity in SLECs.
The ability to form memory is a major characteristic of the adaptive immune system. NKG2D, as a costimulatory molecule for CD8+ T cells, was shown to rescue memory formation in absence of CD4+ help. However, what exactly is the function of NKG2D on CD8+ T cells and how important is NKG2D for memory formation is not known. To recapitulate a full course of CD8+ T cell activation, from priming to memory recall, we immunized C57BL/6 mice with peptide-pulsed dendritic cells and followed the CD8+ T cell responses at priming, effector and memory phases. Using NKG2D deficient (NKG2D-KO) CD8+ T cells, we found that NKG2D signaling was not necessary to achieve CD8+ T cell priming. However, NKG2D-KO CD8+ T cells showed lower effector functions (reduced in vivo kill and reduced cytokine secretion upon in vitro restimulation) compared to wildtype CD8+ T cells. Blocking NKG2D signaling at the effector phase with a single injection of anti-NKG2D antibody (non-depleting) recapitulated the results observed with NKG2D-KO CD8+ T cells. Importantly, the CD8+ T cells that lacked NKG2D signaling at effector phase failed to differentiate into protective memory cells. These results indicate that NKG2D signaling certifies CD8+ T cells to become memory cells and that this certification occurs during the effector phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.