S U M M A R YThe status of the Golgi complex in normal vs osteoarthrotic (OA) cartilage has not yet been studied. A monoclonal antibody, MAb 58-K-9, allowed scoring of Golgi labeling intensity. In addition, ultrastructural assessment enabled us to focus on the distribution and relation between the endoplasmic reticulum (ER) and Golgi membranes. The study was performed in both normal and partially menisectomized OA-induced rat cartilage 20 and 45 days after surgery. Comparing Golgi immunolabeling intensities (mean Ϯ SEM) revealed a highly significant difference between normal (9.98 Ϯ 1.25), 20-day (2.49 Ϯ 0.34), and 45-day (0.82 Ϯ 0.22) cartilage. Moreover, chondrocytes from normal cartilage displayed 71.18% of labeling intensity in contrast to OA cartilage, in which chondrocyte labeling intensities were 24.95% (20 days) and 8.11% (45 days). OA chondrocytes appeared to display an overall reduction in Golgi labeling intensity, suggesting disruption of this organelle as the OA damage progressed. Interestingly, many 20-day OA-induced chondrocytes exhibited bubble-like Golgi immunolabeling compartmentalizing the cytoplasm, concomitant with putative apoptotic nuclear changes. At the same time, OA chondrocytes with a typical ultrastructural apoptotic pattern revealed a prominent ER gathered together with Golgi vesicles and saccules, also appearing to compartmentalize chondrocyte cytoplasm. We speculate about the role of Golgi modifications and apoptosis in OA pathogenesis.
Actinobacillus seminis is an autochthonous gram-negative bacterium that affects reproductive organs, causing epididymitis, low fertility, and occasional abortions in ovine and goats. The virulence factors and the pathogenicity mechanisms of A. seminis have not been clearly elucidated yet. In this work, biofilm production by A. seminis in in vitro assays is described and characterized. After 48-h incubation at 37 °C in trypticase soy broth, A. seminis formed biofilms containing an extracellular matrix comprised mainly of fibrillar material. Microaerophilia or the presence of calcium diminished biofilm formation in approximately 50% and 70%, respectively, but low iron concentrations increased it 40%. Through enzymatic digestion, it was found that
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.