We collated contact tracing data from COVID-19 clusters in Singapore and Tianjin, China and estimated the extent of pre-symptomatic transmission by estimating incubation periods and serial intervals. The mean incubation periods accounting for intermediate cases were 4.91 days (95%CI 4.35, 5.69) and 7.54 (95%CI 6.76, 8.56) days for Singapore and Tianjin, respectively. The mean serial interval was 4.17 (95%CI 2.44, 5.89) and 4.31 (95%CI 2.91, 5.72) days (Singapore, Tianjin). The serial intervals are shorter than incubation periods, suggesting that pre-symptomatic transmission may occur in a large proportion of transmission events (0.4-0.5 in Singapore and 0.6-0.8 in Tianjin, in our analysis with intermediate cases, and more without intermediates). Given the evidence for pre-symptomatic transmission it is vital that even individuals who appear healthy abide by public health measures to control COVID-19.
Background: As the COVID-19 epidemic is spreading, incoming data allows us to quantify values of key variables that determine the transmission and the effort required to control the epidemic. We determine the incubation period and serial interval distribution for transmission clusters in Singapore and in Tianjin. We infer the basic reproduction number and identify the extent of pre-symptomatic transmission.Methods: We collected outbreak information from Singapore and Tianjin, China, reported from Jan.19-Feb.26 and Jan.21-Feb.27, respectively. We estimated incubation periods and serial intervals in both populations.Results: The mean incubation period was 7.1 (6.13, 8.25) days for Singapore and 9 (7.92, 10.2) days for Tianjin. Both datasets had shorter incubation periods for earlier-occurring cases. The mean serial interval was 4.56 (2.69, 6.42) days for Singapore and 4.22 (3.43, 5.01) for Tianjin. We inferred that early in the outbreaks, infection was transmitted on average 2.55 and 2.89 days before symptom onset (Singapore, Tianjin). The estimated basic reproduction number for Singapore was 1.97 (1.45, 2.48) secondary cases per infective; for Tianjin it was 1.87 (1.65, 2.09) secondary cases per infective.Conclusions: Estimated serial intervals are shorter than incubation periods in both Singapore and Tianjin, suggesting that pre-symptomatic transmission is occurring. Shorter serial intervals lead to lower estimates of R0, which suggest that half of all secondary infections should be prevented to control spread.
This paper studies various algorithmic issues in reconstructing a species tree from gene trees under the duplication and the mutation cost model. This is a fundamental problem in computational molecular biology. Our main results are as follows. 1. A linear time algorithm is presented for computing all the losses in duplications associated with the least common ancestor mapping from a gene tree to a species tree. This answers a problem raised recently by Eulenstein, Mirkin, and Vingron [J. Comput. Bio., 5 (1998), pp. 135-148]. 2. The complexity of finding an optimal species tree from gene trees is studied. The problem is proved to be NP-hard for the duplication cost and for the mutation cost. Further, the concept of reconciled trees was introduced by Goodman et al. and formalized by Page for visualizing the relationship between gene and species trees. We show that constructing an optimal reconciled tree for gene trees is also NP-hard. Finally, we consider a general reconstruction problem and show it to be NP-hard even for the well-known nearest neighbor interchange distance. 3. A new and efficiently computable metric is defined based on the duplication cost. We show that the problem of finding an optimal species tree from gene trees is NP-hard under this new metric but it can be approximated within factor 2 in polynomial time. Using this approximation result, we propose a heuristic method for finding a species tree from gene trees with uniquely labeled leaves under the duplication cost. Our experimental tests demonstrate that when the number of species is larger than 15 and gene trees are close to each other, our heuristic method is significantly better than the existing program in Page's GeneTree 1.0 that starts the search from a random tree.
Background: Human cancer cell lines are used in research to study the biology of cancer and to test cancer treatments. Recently there are already some large panels of several hundred human cancer cell lines which are characterized with genomic and pharmacological data. The ability to predict drug responses using these pharmacogenomics data can facilitate the development of precision cancer medicines. Although several methods have been developed to address the drug response prediction, there are many challenges in obtaining accurate prediction. Methods: Based on the fact that similar cell lines and similar drugs exhibit similar drug responses, we adopted a similarity-regularized matrix factorization (SRMF) method to predict anticancer drug responses of cell lines using chemical structures of drugs and baseline gene expression levels in cell lines. Specifically, chemical structural similarity of drugs and gene expression profile similarity of cell lines were considered as regularization terms, which were incorporated to the drug response matrix factorization model. Results: We first demonstrated the effectiveness of SRMF using a set of simulation data and compared it with two typical similarity-based methods. Furthermore, we applied it to the Genomics of Drug Sensitivity in Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE) datasets, and performance of SRMF exceeds three state-of-theart methods. We also applied SRMF to estimate the missing drug response values in the GDSC dataset. Even though SRMF does not specifically model mutation information, it could correctly predict drug-cancer gene associations that are consistent with existing data, and identify novel drug-cancer gene associations that are not found in existing data as well. SRMF can also aid in drug repositioning. The newly predicted drug responses of GDSC dataset suggest that mTOR inhibitor rapamycin was sensitive to non-small cell lung cancer (NSCLC), and expression of AK1RC3 and HINT1 may be adjunct markers of cell line sensitivity to rapamycin. Conclusions: Our analysis showed that the proposed data integration method is able to improve the accuracy of prediction of anticancer drug responses in cell lines, and can identify consistent and novel drug-cancer gene associations compared to existing data as well as aid in drug repositioning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.