Cyclotides is a rapidly growing class of plant‐derived cyclic peptides exhibiting several bioactivities with potential applications in the agricultural and pharmaceutical sectors. Both natural and grafted cyclotides have shown promise in cancer therapy. Approximately 70 natural cyclotides belonging to three plant families (Fabaceae, Rubiaceae, and Violaceae) have shown cytotoxicity against several cancer cell lines. Cyclotides exhibit considerable stability against thermal and enzymatic proteolysis, owing to their unique structure with knotted topology and head to tail cyclization. Further, their small size, high stability, oral bioavailability, and tolerance to amino acid substitution in structural loops make them an ideal platform for designing peptide‐based drugs for cancer. Thus, cyclotides provide ideal scaffolds for bioactive epitope grafting and facilitating drug delivery in cancer treatment. Many anticancer linear peptides have been grafted in cysteine knotted cyclic framework of cyclotide for enhancing their cell permeability across cellular membranes, thereby improving their delivery and pharmacokinetics. The present review comprehensively discusses the distribution, toxicity, and anticancer bioactivity of natural cyclotides. Further, it systematically elaborates on the role and action of epitopes' into grafted cyclotides in targeting cancer. The review also encompasses related patents landscape study and future challenges in peptide‐based cancer therapy.
:
The heterocyclic compounds have a great significance in medicinal chemistry because they have extensive biological activities. Cancer is globally the leading cause of death and it is a challenge to develop an appropriate treatment for the management of cancer. Continuous efforts are being made to find a suitable medicinal agent for cancer therapy. Nitrogen-containing heterocycles have received noteworthy attention due to their wide and distinctive pharmacological activities. One of the most important nitrogen-containing heterocycles in medicinal chemistry is ‘quinazoline’ that possesses a wide spectrum of biological properties. This scaffold is an important pharmacophore and is considered a privileged structure. The various substituted quinazolines displayed anticancer activity against different types of cancer. This review highlights the recent advances in quinazoline based molecules as anticancer agents. Several in-vitro and in-vivo models used along with the results are also included. A subpart briefing natural quinazoline containing anticancer compounds is also incorporated in the review.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.