Antimicrobial peptides (AMPs), also known as host defense peptides, are short and generally positively charged peptides found in a wide variety of life forms from microorganisms to humans. Most AMPs have the ability to kill microbial pathogens directly, whereas others act indirectly by modulating the host defense systems. Against a background of rapidly increasing resistance development to conventional antibiotics all over the world, efforts to bring AMPs into clinical use are accelerating. Several AMPs are currently being evaluated in clinical trials as novel anti-infectives, but also as new pharmacological agents to modulate the immune response, promote wound healing, and prevent post-surgical adhesions. In this review, we provide an overview of the biological role, classification, and mode of action of AMPs, discuss the opportunities and challenges to develop these peptides for clinical applications, and review the innovative formulation strategies for application of AMPs.
This brief review aims at providing some illustrative examples on the interaction between amphiphilic peptides and phospholipid membranes, an area of significant current interest.Focusing on antimicrobial peptides, factors affecting peptide-membrane interactions are addressed, including effects of peptide length, charge, hydrophobicity, secondary structure, and topology. Effects of membrane composition are also illustrated, including effects of membrane charge, nature of the polar headgroup, and presence of cholesterol and other sterols. Throughout, novel insights on the importance of peptide adsorption density on membrane stability are emphasized, as is the correlation between peptide adsorption, peptide-induced leakage in model liposome systems, peptide-induced lysis of bacteria, and bacteria killing.
The effect of peptide length and electrostatics on the interaction between Cardin motif peptides and lipid membranes was investigated for (AKKARA)(n) (n = 1-4) and (ARKAAKKA)(n) (n = 1-3) peptides (A, K, and R refer to alanine, lysine, and arginine, respectively) by fluorescence spectroscopy, circular dichroism, ellipsometry, z potential, and photon correlation spectroscopy measurements. The effect of the peptides regarding leakage induction of both zwitterionic and anionic liposomes increased with increasing peptide length, as did the peptide-induced killing of Enterococcus faecalis and Bacillus subtilis bacteria. The peptides, characterized by a random coil conformation both in buffer and when attached to the liposomes (helix content less than 20%), displayed an increased adsorption with increasing peptide length, and plateau adsorption for the longest peptides corresponded to 1 peptide per 65 and 17 lipid molecules for zwitterionic and anionic membranes, respectively. Control experiments with uncharged peptide analogues as well as experiments at high excess electrolyte concentration showed that peptide charges are important both for peptide adsorption and leakage induction. These observations, together with observations of the liposome z potential at different peptide additions as well as a comparison between the results for zwitterionic and anionic liposomes, suggest that electrostatically affected local packing effects are crucial for the action of these peptides, although pore formation such as that observed for many AMPs cannot be excluded at present.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.