BackgroundFirm attachments binding muscles to skeleton are crucial mechanical components of the vertebrate body. These attachments (entheses) are complex three-dimensional structures, containing distinctive arrangements of cells and fibre systems embedded in the bone, which can be modified during ontogeny. Until recently it has only been possible to obtain 2D surface and thin section images of entheses, leaving their 3D histology largely unstudied except by extrapolation from 2D data. Entheses are frequently preserved in fossil bones, but sectioning is inappropriate for rare or unique fossil material.Methodology/Principal FindingsHere we present the first non-destructive 3D investigation, by propagation phase contrast synchrotron microtomography (PPC-SRµCT), of enthesis histology in extant and fossil vertebrates. We are able to identify entheses in the humerus of the salamander Desmognathus from the organization of bone-cell lacunae and extrinsic fibres. Statistical analysis of the lacunae differentiates types of attachments, and the orientation of the fibres, reflect the approximate alignment of the muscle. Similar histological structures, including ontogenetically related pattern changes, are perfectly preserved in two 380 million year old fossil vertebrates, the placoderm Compagopiscis croucheri and the sarcopterygian fish Eusthenopteron foordi.Conclusions/SignificanceWe are able to determine the position of entheses in fossil vertebrates, the approximate orientation of the attached muscles, and aspects of their ontogenetic histories, from PPC-SRµCT data. Sub-micron microtomography thus provides a powerful tool for studying the structure, development, evolution and palaeobiology of muscle attachments.
MEASUREMENTSTABLE S1. Maximum body length and cranium measurements (mm) for specimens of Pachycormus curtus (n=8), P. macropterus (n=3), P. bollensis (n=6), and Pachycormus sp. (n=14).
PostprintThis is the accepted version of a paper published in Alcheringa. This paper has been peer-reviewed but does not include the final publisher proof-corrections or journal pagination. Citation for the original published paper (version of record):Wretman, L., Kear, B. (2013) Bite marks on an ichthyodectiform fish from Australia: possible evidence of trophic interaction in an Early Cretaceous marine ecosystem. A well-preserved fish skull from late Albian deposits of the Allaru Mudstone near Richmond in Queensland displays a conspicuous V-shaped pattern of indentations, punctures and depression fractures consistent with a vertebrate bite trace. This is the first direct evidence of trophic interaction between vertebrates within an Early Cretaceous marine ecosystem from Australia. The specimen is taxonomically referable to the largebodied (ca 1 m snout-tail length) ichthyodectiform Cooyoo australis, but the size and spacing of the tooth marks is incompatible with attack by a conspecific individual. The lack of osseous growths concordant with healing also suggests that the bite occurred shortly before or after the animal's death. Comparison with the dentitions of other coeval vertebrates indicates compatible tooth arrangements in longirostrine amniote predators such as polycotylid plesiosaurians, ornithocheiroid pterosaurs and especially the ichthyosaurian Platypterygius. The implications of this as a potential predator-prey association are that Early Cretaceous actinopterygians occupied middle-level trophic niches and were in turn consumed by higher-level amniote carnivores, similar to many extant marine vertebrate communities of today. AlcheringaLovisa Wretman [lovisa.wretman@ebc.uu.se],
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.