The classical Bernstein pointwise estimate of the (first) derivative of a univariate algebraic polynomial on an interval has natural extensions to the multivariate setting. However, in several variables the domain of boundedness, even if convex, has a considerable geometric variety. In 1990, Y. Sarantopoulos satisfactorily settled the case of a centrally symmetric convex body by a method we may call "the method of inscribed ellipses." On the other hand, for the general case of nonsymmetric convex bodies we are only within a constant factor of an exact inequality. The best known results suggest relevance of the generalized Minkowski functional, and a natural conjecture for the exact Bernstein factor was formulated with this geometric quantity. This work deals with the most natural and simple nonsymmetric case, that of a standard simplex in R d , and computes the exact yield of the method of inscribed ellipses. Although the known general estimates of the Bernstein factor are improved for the simplex here, we find that not even the exact yield of the inscribed ellipse method reaches the conjecture. However, we also show that for an arbitrary convex body the subset of ridge polynomials satisfies the conjecture.
Denote by n the set of all real algebraic polynomials of degree at most n and let U n :We prove the following exact Markov inequalities:where · R ( · R + ) is the supremum norm on R (R + := [0, ∞)) and u * ,n (v * ,n ) is the Chebyshev polynomial from U n (V n ).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.