We report on the recent test results of a MICROMEGAS detector in terms of position resolution, time resolution and efficiency. With a Ar+CO2 (10%) gas mixture and a strip pitch of 200 µm an accuracy of 80 µm in sigma on the position has been measured. The time resolution is better than 20 ns and a cosmic ray detection efficiency of 94% was obtained. A Monte Carlo simulation indicates that transverse diffusion, gain fluctuation and electronic noise limit the position resolution.
A normal pressure MWPC for beam diagnostics at RIBLL2 has been developed, which has a sensitive area of 80 mm×80 mm and consists of three-layer wire planes. The anode plane is designed with a wider frame to reduce the discharge and without using protection wires. The detector has been tested with a 55 Fe X-ray source and a 200 MeV/u 12 C beam from CSRm. A position resolution better than 250 µm along the anode wires and a detection efficiency higher than 90% have been achieved.
The grid electrode of the grid ionization chamber (GIC) is devoted to eliminating the dependence of the anode pulse amplitude on the initial position and orientation of the ionization. The traditional methods of grid production require cumbersome processes and advanced instruments. In this paper, a bonded stainless steel woven wire mesh (SSWWM) grid electrode manufacturing method is proposed. Compared with the traditional grid electrode, the SSWWM grid features the advantages of simple fabrication, low cost, and high mechanical strength. The energy resolutions of the 40-mesh, 60-mesh and 80-mesh SSWWM grids and orthogonal mesh grid realized by the traditional wire winding method were tested using an 241Am source (around 5.486 MeV). The results show that the optimum energy resolution of the SSWWM and orthogonal mesh grids is approximately 47 keV full width at half-maximum (FWHM). The optimal energy resolutions of the 40-mesh and 60-mesh SSWWM grids are comparable, but the initial operating voltages corresponding to the energy resolution plateau are different, mainly because of the effect of the different geometric parameters of the SSWWM grid on the electron transmittance. A simulation program was used to study the electron transmittance of the SSWWM grid. The simulation results are in agreement with the experimental results, indicating that the simulation program can be used as a reference for the selection of the geometric parameters of the SSWWM grid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.