Cardiometabolic diseases are the leading cause of death worldwide. Despite a known genetic component, our understanding of these diseases remains incomplete. Here we analyzed the contribution of rare variants to 57 diseases and 26 cardiometabolic traits, using data from 200,337 UK Biobank participants with whole-exome sequencing. We identified 57 gene-based associations, with broad replication of novel signals in Geisinger MyCode. There was a striking risk associated with mutations in known Mendelian disease genes, including MYBPC3 , LDLR , GCK , PKD1 and TTN . Many genes showed independent convergence of rare and common variant evidence, including an association between GIGYF1 and type 2 diabetes. We identified several large-effect associations for height, and 18 unique genes associated with blood lipid or glucose levels. Finally, we found that between 1.0 and 2.4% of participants carried rare potentially pathogenic variants for cardiometabolic disorders. These findings may facilitate studies aimed at therapeutics and screening of these common disorders.
The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N = 293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease.
doi: bioRxiv preprintThe heart evolved hundreds of millions of years ago. During mammalian evolution, the cardiovascular system developed with complete separation between pulmonary and systemic circulations incorporated into a single pump with chambers dedicated to each circulation. A lower pressure right heart chamber supplies deoxygenated blood to the lungs, while a high pressure left heart chamber supplies oxygenated blood to the rest of the body. Due to the complexity of morphogenic cardiac looping and septation required to form these two chambers, congenital heart diseases often involve maldevelopment of the evolutionarily recent right heart chamber. Additionally, some diseases predominantly affect structures of the right heart, including arrhythmogenic right ventricular cardiomyopathy (ARVC) and pulmonary hypertension. To gain insight into right heart structure and function, we fine-tuned deep learning models to recognize the right atrium, the right ventricle, and the pulmonary artery, and then used those models to measure right heart structures in over 40,000 individuals from the UK Biobank with magnetic resonance imaging. We found associations between these measurements and clinical disease including pulmonary hypertension and dilated cardiomyopathy. We then conducted genome-wide association studies, identifying 104 distinct loci associated with at least one right heart measurement. Several of these loci were found near genes previously linked with congenital heart disease, such as NKX2-5, TBX3, WNT9B, and GATA4. We also observed interesting commonalities and differences in association patterns at genetic loci linked with both right and left ventricular measurements. Finally, we found that a polygenic predictor of right ventricular end systolic volume was associated with incident dilated cardiomyopathy (HR 1.28 per standard deviation; P = 2.4E-10), and remained a significant predictor of disease even after accounting for a left ventricular polygenic score. Harnessing deep learning to perform large-scale cardiac phenotyping, our results yield insights into the genetic and clinical determinants of right heart structure and function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.