The ⌳ 13 C hypernucleus was studied by measuring ␥ rays in coincidence with the 13 C(K Ϫ , Ϫ ) reaction. ␥ rays from the 1/2 Ϫ and 3/2 Ϫ states, which are the partners of the spin-orbit doublet states with a predominant configuration of ͓ 12 C g.s. (0 ϩ ) p ⌳ ͔, to the ground state were measured. The splitting of the states was found to be ⌬E(1/2 Ϫ Ϫ3/2 Ϫ )ϭϩ152Ϯ54(stat)Ϯ36(syst) keV. This value is 20-30 times smaller than that of single particle states in nuclei around this mass region. The j ⌳ ϭl ⌳ Ϫ1/2͓(p 1/2 ) ⌳ ͔ state appeared higher in energy, as in normal nuclei. The value gives new insight into the Y N interaction. The excitation energies of the 1/2 Ϫ and 3/2 Ϫ states were obtained as 10.982Ϯ0.031(stat)Ϯ0.056(syst) and 10.830Ϯ0.031(stat)Ϯ0.056(syst) MeV, respectively. We also observed ␥ rays from the 3/2 ϩ state, which has a ͓ 12 C(2 ϩ ) s ⌳ ͔ configuration, to the ground state in ⌳ 13 C. The excitation energy of the 3/2 ϩ state was obtained as 4.880Ϯ0.010(stat) Ϯ0.017(syst) MeV. Nuclear ␥ rays with energies of 4.438 and 15.100 MeV had similar yields, which suggests that a quasifree knockout of a ⌳ particle is dominant in highly excited regions.
We report new measurements of the ratio of the electric form factor to the magnetic form factor of the neutron, G n E /G n M , obtained via recoil polarimetry from the quasielastic 2 H( e, e ′ n) 1 H reaction at Q 2 values of 0.45, 1.13, and 1.45 (GeV/c) 2 with relative statistical uncertainties of 7.6 and 8.4% at the two higher Q 2 points, which were not reached previously via polarization measurements. Scale and systematic uncertainties are small.
The spin-orbit splitting of Lambda single-particle states in (13)(Lambda)C was measured. The 13C(K-,pi(-))(13)(Lambda)C reaction was used to excite both the 1/2(-) and 3/2(-) states simultaneously, which have predominantly 12C(0(+)) x p(Lambda) configuration. gamma rays from the states to the ground state were measured in coincidence with the pi(-)'s, by which ls splitting was found to be 152+/-54(stat)+/-36(syst) keV. The value is 20-30 times smaller than exhibited by the ls splitting in the nuclear shell model. This value gives us new insight into the YN interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.