Transportation cyber-physical systems are constrained by spatiality and real-time because of their high level of heterogeneity. Therefore, applications like traffic control generally manage moving objects in a single-machine multithreaded manner, whereas suffering from frequent locking operations. To address this problem and improve the throughput of moving object databases, we propose a GPU-accelerated indexing method, based on a grid data structure, combined with quad-trees. We count object movements and decide whether a particular node should be split or be merged on the GPU. In this case, bottlenecked nodes can be translated to quad-tree without interfering with the CPU. Hence, waiting time of other threads caused by locking operations raised by object data updating can be reduced. The method is simple while more adaptive to scenarios where the distribution of moving objects is skewed. It also avoids shortcomings of existing methods with performance bottleneck on the hot area or spending plenty of calculation resources on structure balancing. Experiments suggest that our method shows higher throughput and lower response time than the existing indexing methods. The advantage is even more significant under the skewed distribution of moving objects.
Mining useful knowledge from high-dimensional data is a hot research topic. Efficient and effective sample classification and feature selection are challenging tasks due to high dimensionality and small sample size of microarray data. Feature selection is necessary in the process of constructing the model to reduce time and space consumption. Therefore, a feature selection model based on prior knowledge and rough set is proposed. Pathway knowledge is used to select feature subsets, and rough set based on intersection neighborhood is then used to select important feature in each subset, since it can select features without redundancy and deals with numerical features directly. In order to improve the diversity among base classifiers and the efficiency of classification, it is necessary to select part of base classifiers. Classifiers are grouped into several clusters by k-means clustering using the proposed combination distance of Kappa-based diversity and accuracy. The base classifier with the best classification performance in each cluster will be selected to generate the final ensemble model. Experimental results on three Arabidopsis thaliana stress response datasets showed that the proposed method achieved better classification performance than existing ensemble models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.