A novel deionization technology was reported based on dual-ions electrochemistry technique, which possesses a stable salt removal capacity of 68.5 mg g−1. The salt is removed during the discharge process, and thus the system is called “desalination generator”.
Novel desalination technologies with high ion removal capacity and low energy consumption are desirable to tackle the water shortage challenge. Herein, we report a dual-ion electrochemistry deionization (DEDI) system with silver chloride as the electrochemical chloride release/capture anode, sodium manganese oxide as the electrochemical sodium release/capture cathode, and flow salt solution as the electrolyte. Sodium and chloride ions are synergistically released to the flow electrolyte feed at an applied positive current. Under negative current conditions, the two ions are extracted from the flow electrolyte feed to their corresponding electrodes at the same time, which can cause a conductivity decrease indicating salt removal. The salt absorption/desorption capacity of the novel deionization system is stable and reversible, up to 57.4 mg g for 100 cycles, which is much higher than that obtained by conventional or hybrid capacitive deionization devices. The charge efficiency is 0.979/0.956 during the salt desorption/absorption process. This research will be of great significance for high efficiency and low energy consumption seawater desalination.
Desalination is a sustainable process that removes sodium and chloride ions from seawater. Herein, we demonstrate a faradaic mechanism to promote the capacity of capacitive deionization in highly concentrated salt water via an electrochemical deionization device. In this system, ion removal is achieved by the faradaic mechanism via a constant current operation mode, which is improved based on the constant voltage operation mode used in the conventional CDI operation. Benefiting from the high capacity and excellent rate performance of Prussian blue as an active electrochemical reaction material, the designed unit has revealed a superior removal capacity with an ultrafast ion removal rate. A high removal capacity of 101.7 mg g has been obtained with proper flow rate and current density. To further improve the performance of the EDI, a reduced graphene oxide with nanopores and Prussian blue composite has been synthesized. The PB@NPG has demonstrated a high salt removal capacity of 120.0 mg g at 1 C with an energy consumption of 6.76 kT per ion removed, which is much lower than most CDI methods. A particularly high rate performance of 0.5430 mg g s has been achieved at 40 C. The faradaic mechanism promoted EDI has provided a new insight into the design and selection of host materials for highly concentrated salt water desalination.
Desalination devices such as capacitive deionization (CDI) have been developed for many years as an approach to relief freshwater shortage. However, due to the limitation of physical adsorption capacity of CDI, the salt removal capacity is unable to reach high value. To enhance the desalination capacity effectively, battery materials are employed to fabricate a dual‐ion electrochemical deionization (DEDI) device. Herein, a binder‐free DEDI system with two free‐standing aerogel electrodes is reported. A Na3V2(PO4)3/graphene hybrid aerogel is used as sodium electrode and a AgCl/graphene hybrid aerogel is used as chloride electrode. With electric current passing through, sodium and chloride ions are released or absorbed by two aerogel electrodes. This system achieves super high desalination capacity, excellent cycling stability, and rapid desalination rate. The desalination capacity is as high as 107.5 mg g−1 after 50 cycles with the current density of 100 mA g−1. The outstanding desalination performance of this system shows a synergistic effect of combining battery materials with graphene for deionization and promises a new potential alternative of future desalination design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.