We report a facile way to grow various porous NiO nanostructures including nanoslices, nanoplates, and nanocolumns, which show a structure-dependence in their specific charge capacitances. The formation of controllable porosity is due to the dehydration and re-crystallization of β-Ni(OH) 2 nanoplates synthesized by a hydrothermal process. Thermogravimetric analysis shows that the decomposition temperature of the β-Ni(OH) 2 nanostructures is related to their morphology. In electrochemical tests, the porous NiO nanostructures show stable cycling performance with retention of specific capacitance over 1000 cycles. Interestingly, the formation of nanocolumns by the stacking of β-Ni(OH) 2 nanoslices/plates favors the creation of small pores in the NiO nanocrystals obtained after annealing, and the surface area is over five times larger than that of NiO nanoslices and nanoplates. Consequently, the specific capacitance of the porous NiO nanocolumns (390 F/g) is significantly higher than that of the nanoslices (176 F/g) or nanoplates (285 F/g) at a discharge current of 5 A/g. This approach provides a clear illustration of the process-structure-property relationship in nanocrystal synthesis and potentially offers strategies to enhance the performance of supercapacitor electrodes.
We report a simple wet-chemical process to prepare porous CuO nanobelts (NBs) with high surface area and small crystal grains. These CuO NBs were mixed with carbon nanotubes in an appropriate ratio to fabricate pseudocapacitor electrodes with stable cycling performances, which showed a series of high energy densities at different power densities, for example, 130.2, 92, 44, 25, and 20.8 W h kg(-1) at power densities of 1.25, 6.25, 25, and 50 k Wh kg(-1), respectively. CuO-on-single-walled carbon nanotube (SWCNT) flexible hybrid electrodes were also fabricated using the SWCNT films as current collectors. These flexible electrodes showed much higher specific capacitance than that of electrodes made of pure SWCNTs and exhibited more stable cycling performance, for example, effective specific capacitances of >62 F g(-1) for the hybrid electrodes after 1000 cycles in 1 M LiPF6/EC:DEC at a current density of 5 A g(-1) and specific capacitance of only 23.6 F g(-1) for pure SWCNT electrodes under the same testing condition.
Although theoretical calculations indicate that the thermoelectric figure of merit, ZT, of carbon nanotubes (CNTs) could reach >2, the experimentally reported ZT values of CNTs are typically in the range of 10 À3 -10 À2 , which is not attractive for thermal energy conversion applications. In this work, we report the preparation of flexible CNT bulky paper for thermoelectric applications. The ZT values of the CNT bulky papers could be significantly enhanced by Ar plasma treatment, i.e. increasing it from 0.01 for pristine CNTs to 0.4 for Ar-plasma treated CNTs. The improved thermoelectric properties were mainly due to the greatly increased Seebeck coefficients and a reduction in the thermal conductivities, although the electrical conductivities also decreased. Such an improvement makes the plasma treated CNT bulky papers promising as a new type of thermoelectric material for certain niche applications as they are easily processed, mechanically flexible and durable, and chemically stable.
Desalination devices such as capacitive deionization (CDI) have been developed for many years as an approach to relief freshwater shortage. However, due to the limitation of physical adsorption capacity of CDI, the salt removal capacity is unable to reach high value. To enhance the desalination capacity effectively, battery materials are employed to fabricate a dual‐ion electrochemical deionization (DEDI) device. Herein, a binder‐free DEDI system with two free‐standing aerogel electrodes is reported. A Na3V2(PO4)3/graphene hybrid aerogel is used as sodium electrode and a AgCl/graphene hybrid aerogel is used as chloride electrode. With electric current passing through, sodium and chloride ions are released or absorbed by two aerogel electrodes. This system achieves super high desalination capacity, excellent cycling stability, and rapid desalination rate. The desalination capacity is as high as 107.5 mg g−1 after 50 cycles with the current density of 100 mA g−1. The outstanding desalination performance of this system shows a synergistic effect of combining battery materials with graphene for deionization and promises a new potential alternative of future desalination design.
Seawater desalination is a promising way to alleviate water scarcity nowadays. Present capacitive desalination methods have limitation of salt removal capacity. Herein, a new dual-ion electrochemical desalination system with an ultrahigh desalination capacity is reported. It is composed of Na3V2(PO4)3@C wires as a sodium ion Faradaic electrode, AgCl as a chloride ion Faradaic electrode, and salt feed solution as the electrolyte. When a constant current is applied, redox reactions occur on electrodes, releasing or removing sodium ions and chloride ions. Na3V2(PO4)3 has a high sodium specific capacity, and as a sodium superionic conductor, Na3V2(PO4)3@C wires form an ion conductor network, providing high sodium ion mobility. Additionally, both the wire structure and carbon shell enhance the electrical conductivity of Na3V2(PO4)3. Benefiting from these, outstanding desalination performance, rate capability, and cycle capability have been achieved with the Na3V2(PO4)3@C wire–AgCl device. An ultrahigh desalination capacity of 98.0 mg/g is obtained at a current density of 100 mA/g for more than 50 cycles. This system provides a viable dual-ion electrochemical desalination strategy, which outperforms most of the existing desalination methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.