We report a simple wet-chemical process to prepare porous CuO nanobelts (NBs) with high surface area and small crystal grains. These CuO NBs were mixed with carbon nanotubes in an appropriate ratio to fabricate pseudocapacitor electrodes with stable cycling performances, which showed a series of high energy densities at different power densities, for example, 130.2, 92, 44, 25, and 20.8 W h kg(-1) at power densities of 1.25, 6.25, 25, and 50 k Wh kg(-1), respectively. CuO-on-single-walled carbon nanotube (SWCNT) flexible hybrid electrodes were also fabricated using the SWCNT films as current collectors. These flexible electrodes showed much higher specific capacitance than that of electrodes made of pure SWCNTs and exhibited more stable cycling performance, for example, effective specific capacitances of >62 F g(-1) for the hybrid electrodes after 1000 cycles in 1 M LiPF6/EC:DEC at a current density of 5 A g(-1) and specific capacitance of only 23.6 F g(-1) for pure SWCNT electrodes under the same testing condition.
Three different nanostructures of CuO (wires, platelets, and spindles) have been synthesized by one precursor. First, Cu(OH) 2 nanowires have been prepared by a two-step, template-free, wet chemical approach. And then the transformation from the 1D Cu(OH) 2 nanostructures to a variety of novel CuO nanostructures has been realized by thermal dehydration of the as-prepared Cu(OH) 2 in solution. The electrochemical characters of the three different nanostructures are studied by their investigation of electrochemical impendance spectrum and cyclic voltammetry. A comparison of the three nanostructures showed us an attractive phenomenon, that is, the electron transfer ability of CuO nanospindles was stronger than that of CuO nanowires or nanoplatelets. We suggest the possible reason is the assembly of the nanostructrue. The electrochemical response of the as-prepared samples on H 2 O 2 is also investigated, and good application in electrochemical detecting of glucose is exhibited.
CuS nanotubes made up of nanoparticles were successfully prepared in large quantities in an O/W microemulsion system under low temperature; the as-prepared CuS nanotube modified electrode was used as an enzyme-free glucose sensor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.