Industrial microalgae, as a big family of promising producers of renewable biomass feedstock, have been commercially exploited for functional food, living feed and feed additives, high-value chemicals in nutraceuticals, cosmeceuticals, and chemical reagents. Recently, microalgae have also been considered as a group that might play an important role in biofuel development and environmental protection. Almost all current products of industrial microalgae are derived from their biomass; however, large amounts of spent cell-free media are available from mass cultivation that is mostly unexploited. In this contribution we discuss that these media, which may contain a remarkable diversity of bioactive substances are worthy to be recovered for further use. Obviously, the extracellular metabolites from industrial microalgae have long been neglected in the development of production methods for valuable metabolites. With the advances in the last ten years, more and more structures and properties from extracellular metabolites have been identified, and the potential utilization over wide fields is attracting attention. Some of these extracellular metabolites can be potentially used as drugs, antioxidants, growth regulators or metal chelators. The purpose of this review is to provide an overview of the known extracellular metabolites from industrial microalgae which might be of commercial interest. The attention mainly focuses on the reports of extracellular bioactive metabolites and their potential application in biotechnology.
Mycotoxins are highly toxic metabolites produced by fungi that pose a huge threat to human and animal health. Contamination of food and feed with mycotoxins is a worldwide issue, which leads to huge financial losses, annually. Decades of research have developed various approaches to degrade mycotoxins, among which the biological methods have been proved to have great potential and advantages. This review provides an overview on the important advances in the biological removal of mycotoxins over the last decade. Here, we provided further insight into the chemical structures and the toxicity of the main mycotoxins. The innovative strategies including mycotoxin degradation by novel probiotics are summarized in an in-depth discussion on potentialities and limitations. We prospected the promising future for the development of multifunctional approaches using recombinant enzymes and microbial consortia for the simultaneous removal of multiple mycotoxins.
The thermoacidophilic red alga Galdieria sulphuraria has been optimizing a photosynthetic system for low-light conditions over billions of years, thriving in hot and acidic endolithic habitats. The growth of G. sulphuraria in the laboratory is very much dependent on light and substrate supply. Here, higher cell densities in G. sulphuraria under high-light conditions were obtained, although reductions in photosynthetic pigments were observed, which indicated this alga might be able to relieve the effects caused by photoinhibition. We further describe an extensive untargeted metabolomics study to reveal metabolic changes in autotrophic and mixotrophic G. sulphuraria grown under high and low light intensities. The up-modulation of bilayer lipids, that help generate better-ordered lipid domains (e.g., ergosterol) and keep optimal membrane thickness and fluidity, were observed under high-light exposure. Moreover, high-light conditions induced changes in amino acids, amines, and amide metabolism. Compared with the autotrophic algae, higher accumulations of osmoprotectant sugars and sugar alcohols were recorded in the mixotrophic G. sulphuraria. This response can be interpreted as a measure to cope with stress due to the high concentration of organic carbon sources. Our results indicate how G. sulphuraria can modulate its metabolome to maintain energetic balance and minimize harmful effects under changing environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.