Pressure sensors should have an excellent sensitivity in the range of 0-20 kPa when applied in wearable applications. Traditional pressure sensors cannot achieve both a high sensitivity and a large working range simultaneously, which results in their limited applications in wearable fields. There is an urgent need to develop a pressure sensor to make a breakthrough in both sensitivity and working range. In this paper, a graphene-paper pressure sensor that shows excellent performance in the range of 0-20 kPa is proposed. Compared to most reported graphene pressure sensors, this work realizes the optimization of sensitivity and working range, which is especially suitable for wearable applications. We also demonstrate that the pressure sensor can be applied in pulse detection, respiratory detection, voice recognition, as well as various intense motion detections. This graphene-paper pressure sensor will have great potentials for smart wearable devices to achieve health monitoring and motion detection.
Traditional sound sources and sound detectors are usually independent and discrete in the human hearing range. To minimize the device size and integrate it with wearable electronics, there is an urgent requirement of realizing the functional integration of generating and detecting sound in a single device. Here we show an intelligent laser-induced graphene artificial throat, which can not only generate sound but also detect sound in a single device. More importantly, the intelligent artificial throat will significantly assist for the disabled, because the simple throat vibrations such as hum, cough and scream with different intensity or frequency from a mute person can be detected and converted into controllable sounds. Furthermore, the laser-induced graphene artificial throat has the advantage of one-step fabrication, high efficiency, excellent flexibility and low cost, and it will open practical applications in voice control, wearable electronics and many other areas.
A mechanical sensor with graphene porous network (GPN) combined with polydimethylsiloxane (PDMS) is demonstrated by the first time. Using the nickel foam as template and chemically etching method, the GPN can be created in the PDMS-nickel foam coated with graphene, which can achieve both pressure and strain sensing properties. Because of the pores in the GPN, the composite as pressure and strain sensor exhibit wide pressure sensing range and highest sensitivity among the graphene foam-based sensors, respectively. In addition, it shows potential applications in monitoring or even recognize the walking states, finger bending degree, and wrist blood pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.