Abnormal behavior detection and trust evaluation mode of traditional sensor node have a single function without considering all the factors, and the trust value algorithm is relatively complicated. To avoid these above disadvantages, a trust evaluation model based on the autonomous behavior of sensor node is proposed in this paper. Each sensor node has the monitoring privilege and obligation. Neighboring sensor nodes can monitor each other. Their direct and indirect trust values can be achieved by using a relatively simple calculation method, the synthesis trust value of which could be got according to the composition rule of D-S evidence theory. Firstly, the cluster head assigns different weighted value for the data from each sensor node, then the weight vector is set according to the synthesis trust value, the data fusion processing is executed, and finally the cluster head sensor node transmits the fused result to the base station. Simulation experiment results demonstrate that the trust evaluation model can rapidly, exactly, and effectively recognize malicious sensor node and avoid malicious sensor node becoming cluster head sensor node. The proposed algorithm can greatly increase the safety and accuracy of data fusion, improve communication efficiency, save energy of sensor node, suit different application fields, and deploy environments.
In mobile Internet of Tings, based on cross-layer design and resource-aware scheduling, the combination of light weight coding and compressed sensing is used to improve the real-time performance of acquisition of system resource and reliability of resource management in this paper. Compressed sensing scheme based on the adaptive frame format definition of lightweight coding is able to set up the parameters such as sample signal, signal and hops. The nonlinear relationship matrixes between resource information of sensors or system and quality of services are built to manage the global or local network resource scheduling. Experimental results show that the proposed scheme is better than the traditional scheme or resource management based on compressed sensing alone scheme, which can make the system be able to achieve optimal resource allocation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.