The assembly of the preinitiation complex (PIC) occurs upstream of the +1 nucleosome which, in yeast, obstructs the transcription start site and is frequently assembled with the histone variant H2A.Z. To understand the contribution of the transcription machinery in the disassembly of the +1 H2A.Z nucleosome, conditional mutants were used to block PIC assembly. A quantitative ChIP-seq approach, which allows detection of global occupancy change, was employed to measure H2A.Z occupancy. Blocking PIC assembly resulted in promoter-specific H2A.Z accumulation, indicating that the PIC is required to evict H2A.Z. By contrast, H2A.Z eviction was unaffected upon depletion of INO80, a remodeler previously reported to displace nucleosomal H2A.Z. Robust PIC-dependent H2A.Z eviction was observed at active and infrequently transcribed genes, indicating that constitutive H2A.Z turnover is a general phenomenon. Finally, sites with strong H2A.Z turnover precisely mark transcript starts, providing a new metric for identifying cryptic and alternative sites of initiation.DOI: http://dx.doi.org/10.7554/eLife.14243.001
The chromatin remodeler SWR deposits histone H2A.Z at promoters and other regulatory sites via an ATP-driven histone exchange reaction that replaces nucleosomal H2A with H2A.Z. Simultaneous binding of SWR to both H2A nucleosome and free H2A.Z induces SWR ATPase activity and engages the histone exchange mechanism. Swc5 is a conserved subunit of the 14-polypeptide SWR complex that is required for the histone exchange reaction, but its molecular role is unknown. We found that Swc5, although not required for substrate binding, is required for SWR ATPase stimulation, suggesting that Swc5 is required to couple substrate recognition to ATPase activation. A biochemical complementation assay was developed to show that a unique, conserved domain at the C-terminus of Swc5, called Bucentaur (BCNT), is essential for the histone exchange activity of SWR, whereas an acidic region at the N-terminus is required for optimal SWR function. In vitro studies showed the acidic N-terminus of Swc5 preferentially binds to the H2A–H2B dimer and exhibits histone chaperone activity. We propose that an auxiliary function of Swc5 in SWR is to assist H2A ejection as H2A.Z is inserted into the nucleosome.
The SWR complex edits the histone composition of nucleosomes at promoters to facilitate transcription by replacing the two nucleosomal H2A-H2B (A-B) dimers with H2A.Z-H2B (Z-B) dimers. Swc5, a subunit of SWR, binds to A-B dimers, but its role in the histone replacement reaction was unclear. In this study, we showed that Swc5 uses a tandem DEF/Y motif within an intrinsically disordered region to engage the A-B dimer. A 2.37-Å X-ray crystal structure of the histone binding domain of Swc5 in complex with an A-B dimer showed that consecutive acidic residues and flanking hydrophobic residues of Swc5 form a cap over the histones, excluding histone–DNA interaction. Mutations in Swc5 DEF/Y inhibited the nucleosome editing function of SWR in vitro. Swc5 DEF/Y interacts with histones in vivo, and the extent of this interaction is dependent on the remodeling ATPase of SWR, supporting a model in which Swc5 acts as a wedge to promote A-B dimer eviction. Given that DEF/Y motifs are found in other evolutionary unrelated chromatin regulators, this work provides the molecular basis for a general strategy used repeatedly during eukaryotic evolution to mobilize histones in various genomic functions.
Highlights d The SWR chromatin remodeler engages stochastically on either side of a +1 nucleosome d Temperature determines whether SWR inserts H2A.Z preferentially on one side of the nucleosome d The sequence of a 16-bp region affects temperaturedependent H2A.Z insertion d Nucleosomes with consecutive G/C bases are more H2A.Z enriched at yeast promoters
Chz1 is a specific chaperone for the histone variant H2A.Z in budding yeast. The ternary complex formed by Chz1 and H2A.Z-H2B dimer is the major in vivo substrate of Swi2/snif2-related 1 (SWR1), the ATP-dependent chromatin remodeling enzyme that deposits H2A.Z into chromatin. However, the structural basis for the binding preference of Chz1 for H2A.Z over H2A and the mechanism by which Chz1 modulates the histone replacement remain elusive. Here, we show that Chz1 utilizes 2 distinct structural domains to engage the H2A.Z-H2B dimer for optimal and specific recognition of H2A.Z. The middle region of Chz1 (Chz1-M) directly interacts with 2 highly conserved H2A.Z-specific residues (Gly98 and Ala57) and dictates a modest preference for H2A.Z-H2B. In addition, structural and biochemical analysis show that the C-terminal region of Chz1 (Chz1-C) harbors a conserved DEF/Y motif, which reflects the consecutive D/E residues followed by a single aromatic residue, to engage an arginine finger and a hydrophobic pocket in H2A.Z-H2B, enhancing the binding preference for H2A.Z-H2B. Furthermore, Chz1 facilitates SWR1-mediated H2A.Z deposition by alleviating inhibition caused by aggregation of excess free histones, providing insights into how Chz1 controls the bioavailability of H2A.Z to assist SWR1 in promoter-specific installation of a histone mark. Our study elucidates a novel H2A.Z-recognition mechanism and uncovers a molecular rationale for binding of free histone by specialized histone chaperones in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.