In general, multiple components such as water direct saturation (DS), magnetization transfer (MT), chemical exchange saturation transfer (CEST) and aliphatic nuclear overhauser effect (NOE) contribute to Z-spectrum. The conventional CEST quantification method based on asymmetrical analysis may lead to quantification errors due to the semi-solid MT asymmetry and the aliphatic NOE effect located on single side of the Z-spectrum. Fitting individual contributors to the Z-spectrum may improve the quantification of each component. In this study, we aim to characterize the multiple exchangeable components from an intracranial tumor model using a simplified Z-spectral fitting method. In this method, the Z-spectrum acquired at low saturation RF amplitude (50 Hz) was modeled as the summation of five Lorentzian functions that correspond to NOE, MT effect, bulk water, amide proton transfer (APT) effect and a CEST peak located at +2ppm, called CEST@2ppm. With the pixel-wise fitting, the regional variation of these five components in the brain tumor and the normal brain tissue were quantified and summarized. Increased APT effect, decreased NOE and reduced CEST@2ppm were observed in the brain tumor compared to the normal brain tissue. Additionally, the CEST@2ppm decreased with tumor progression. The CEST@2ppm was found to correlate with the creatine concentration quantified with proton magnetic resonance spectroscopy (1H-MRS). Based on the correlation curve, the creatine contribution to the CEST@2ppm was quantified. The CEST@2ppm signal could be a novel imaging surrogate for in vivo creatine, the important bioenergetics marker. Given its noninvasive nature, this CEST MRI method may have broad applications in cancer bioenergetics.
Dominant Vγ2Vδ2 T-cell subset recognizes phosphoantigen, and exist only in humans and nonhuman primates. Despite the discovery of γδ T cells for >30 years, a proof-of-concept (POC) study has not been done to prove the principle that Vγ2Vδ2 T-cell subset is protective against M. tuberculosis (Mtb) and other infections. Here, we employed adoptive cell transfer strategy to define protective role for Vγ2Vδ2 T cells in primate TB model. Vγ2Vδ2 T cells for adoptive transfer displayed central/effector memory and mounted effector functions of producing anti-Mtb cytokines and inhibiting intracellular mycobacteria. They also expressed CXCR3/CCR5/LFA-1 trafficking/tissue-resident phenotypes and consistently trafficked to the airway and retained there detectable from 6 hours through 7 days after adoptive transfer. Interestingly, the test group of macaques receiving transfer of Vγ2Vδ2 T cells at weeks 1 and 3 after high-dose 500 CFU Mtb infection exhibited significantly lower levels of Mtb infection burdens in lung lobes and extra-pulmonary organs than the control groups receiving PBL or saline. Consistently, adoptive transfer of Vγ2Vδ2 T cells attenuated TB pathology and contained lesions mostly in the infection-site of right caudal lung lobe, with no or reduced TB dissemination to other lobes, spleens or livers/kidneys whereas the controls showed widespread TB dissemination. The POC finding supports the view that dominant Vγ2Vδ2 T-cell subset may be included for the rational design of TB vaccine or host-directed therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.