Binary wettability patterned surfaces with extremely high wetting contrasts can be found in nature on living creatures. They offer a versatile platform for microfluidic management. In this work, a facile approach to fabricating erasable and rewritable surface patterns with extreme wettability contrasts (superhydrophilic/superhydrophobic) on a TiO2 nanotube array (TNA) surface through self-assembly and photocatalytic lithography is reported. The multifunctional micropatterned superhydrophobic TNA surface can act as a 2D scaffold for site-selective cell immobilization and reversible protein absorption. Most importantly, such a high-contrast wettability template can be used to construct various well-defined 3D functional patterns, such as calcium phosphate, silver nanoparticles, drugs, and biomolecules in a highly selective manner. The 3D functional patterns would be a versatile platform in a wide range of applications, especially for biomedical devices (e.g., high-throughput molecular sensing, targeted antibacterials, and drug delivery). In a proof-of-concept study, the surface-enhanced Raman scattering and antibacterial performance of the fabricated 3D AgNP@TNA pattern, and the targeted drug delivery for site-specific and high-sensitivity cancer cell assays was investigated.
This review focuses on recent progress of metal-free sensitizers and on panchromatic engineering of co-sensitization in dye-sensitized solar cells (DSSCs).
This review article outlines the most commonly used methods for making the core/shell structures as the active materials for supercapacitors over the past decade (2007–2018), and points out the most efficient combination of the material categories and morphologies for the core/shell structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.