Introduced here is a new type of strongly donating N‐heterocyclic boryloxy (NHBO) ligand, [(HCDippN)2BO]− (Dipp=2,6‐diisopropylphenyl), which is isoelectronic with the well‐known N‐heterocyclic iminato (NHI) donor class. This 1,3,2‐diazaborole functionalized oxy ligand has been used to stabilize the first acyclic two‐coordinate dioxysilylene and its Ge, Sn, and Pb congeners, thereby presenting the first complete series of heavier group 14 dioxycarbene analogues. All four compounds have been characterized by X‐ray crystallography and density‐functional theory, enabling analysis of periodic trends: the potential for the [(HCDippN)2BO]− ligand to subtly vary its electronic‐donor capabilities is revealed by snapshots showing the gradual evolution of arene π coordination on going from Si to Pb.
The cellular localization profile and molecular association of the phorboxazoles were examined with a streamlined target elucidation system using synthetic fluorescent probes. Cellular image analyses identified the binding of phorboxazole analogues to cytosolic components. Proteomic analysis directed at fluorescently labeled cytosolic fractions indicated that the primary targets observed microscopically were cytokeratins, as verified by determination of low nanomolar binding to cloned and expressed proteins. Phorboxazole probes localized the essential cell cycle promoter cdk4 upon cytokeratin networks.
The phorboxazole natural products are among the most potent inhibitors of cancer cell division, but they are essentially unavailable from natural sources at present. Laboratory syntheses based upon tri-component fragment coupling strategies have been developed that provide phorboxazole A and analogues in a reliable manner and with unprecedented efficiency. This has been orchestrated to occur via the sequential or simultaneous formation of both of the natural product's oxazole moieties from two serine-derived amides, involving oxidation-cyclodehydrations. The optimized preparation of three pre-assembled components, representing carbons 3-17, 18-30, and 31-46, has been developed. This article details the design and syntheses of these three essential building blocks. The convergent coupling approach is designed to facilitate the incorporation of structural changes within each component to generate unnatural analogues, targeting those with enhanced therapeutic potential and efficacy.
The phorboxazoles are mixed non-ribosomal peptide synthase/polyketide synthase biosynthetic products that embody polyketide domains joined via two serine-derived oxazole moieties. Total syntheses of phorboxazole A and analogues have been developed that rely upon the convergent coupling of three fragments via biomimetically inspired de novo oxazole formation. First, the macrolide-containing domain of phorboxazole A was assembled from C3-C17 and C18-C30 building blocks via formation of the C16-C18 oxazole, followed by macrolide ring closure involving an intramolecular Still-Genarri olefination at C2-C3. Alternatively, a ring-closing metathesis process was optimized to deliver the natural product's (2Z)-acrylate with remarkable geometrical selectivity. The C31-C46 side-chain domain was then appended to the macrolide by a second serine amide-derived oxazole assembly. Minimal deprotection then afforded phorboxazole A. This generally effective strategy was then dramatically abbreviated by employing a total synthesis approach wherein both of the natural product's oxazole moieties were installed simultaneously. A key bis-amide precursor to the bis-oxazole was formed in a chemoselective one-pot, bis-amidation sequence without the use of amino or carboxyl protecting groups. Thereafter, both oxazoles were formed from the key C18 and C31 bis-N-(1-hydroxyalkan-2-yl)amide in a simultaneous fashion, involving oxidation-cyclodehydrations. This synthetic strategy provides a total synthesis of phorboxazole A in 18% yield over nine steps from C3-C17 and C18-C30 synthetic fragments. It illustrates the utility of a synthetic design to form a mixed non-ribosomal peptide synthase/polyketide synthase biosynthetic product based upon biomimetic oxazole formation initiated by amide bond formation to join synthetic building blocks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.