In modern e-commerce, the temporal order behind users’ transactions implies the importance of exploiting the transition dependency among items for better inferring what a user prefers to interact in “near future”. The types of interaction among items are usually divided into individual-level interaction that can stand out the transition order between a pair of items, or union-level relation between a set of items and single one. However, most of existing work only captures one of them from a single view, especially on modeling the individual-level interaction. In this paper, we propose a Multi-order Attentive Ranking Model (MARank) to unify both individual- and union-level item interaction into preference inference model from multiple views. The idea is to represent user’s short-term preference by embedding user himself and a set of present items into multi-order features from intermedia hidden status of a deep neural network. With the help of attention mechanism, we can obtain a unified embedding to keep the individual-level interactions with a linear combination of mapped items’ features. Then, we feed the aggregated embedding to a designed residual neural network to capture union-level interaction. Thorough experiments are conducted to show the features of MARank under various component settings. Furthermore experimental results on several public datasets show that MARank significantly outperforms the state-of-the-art baselines on different evaluation metrics. The source code can be found at https://github.com/voladorlu/MARank.
To address the issue of data sparsity and cold-start in recommender system, social information (e.g., user-user trust links) has been introduced to complement rating data for improving the performances of traditional model-based recommendation techniques such as matrix factorization (MF) and Bayesian personalized ranking (BPR). Although effective, the utilization of the explicit user-user relationships extracted directly from such social information has three main limitations. First, it is difficult to obtain explicit and reliable social links. Only a small portion of users indicate explicitly their trusted friends in recommender systems. Second, the "cold-start" users are "cold" not only on rating but also on socializing. There is no significant amount of explicit social information that can be useful for "cold-start" users. Third, an active user can be socially connected with others who have different taste/preference. Direct usage of explicit social links may mislead recommendation. To address these issues, we propose to extract implicit and reliable social information from user feedbacks and identify top-k semantic friends for each user. We incorporate the top-k semantic friends information into MF and BPR frameworks to solve the problems of ratings prediction and items ranking, respectively. The experimental results on three real-world datasets show that our proposed approaches achieve better results than the state-of-the-art MF with explicit social links (with 3.0% improvement on RMSE), and social BPR (with 9.1% improvement on AUC).
Thermo-chemical conversion of carbonaceous wastes such as tyres, plastics, biomass and crude glycerol is a promising technology compared to traditional waste treatment options (e.g. incineration and landfill). The process promotes...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.