Barrier coverage is attractive for many practical applications of directional sensor networks. Power conservation is one of the important issues in directional sensor networks. In this article, we address energy-efficient barrier coverage for directional sensor networks with mobile sensors. First, we derive the critical condition for mobile deployment. We assume that a number of stationary directional sensors are placed independently and randomly following a Poisson point process in a two-dimensional rectangular area. Our analysis shows that the critical condition only depends on the deployment density (l) and the sensing radius (r). When the initial deployment satisfies l\8ln2=r^2, barrier gaps may exist, so we need to redeploy mobile sensors to improve the barrier coverage. Then, we propose an energy-efficient barrier repair algorithm to construct an energy-efficient barrier to detect intruders moving along restricted crossing paths in the target area. Through extensive simulations, the results show that the energy-efficient barrier repair algorithm improves the barrier coverage and prolongs the network lifetime by minimizing the maximum sensor moving distance. And in comparison with the energy-efficient barrier coverage algorithm (previous works), the energy-efficient barrier repair algorithm increases by 18% of network lifetime on average.
The network coding technique is promising for improving the performance of video communication in wireless multimedia sensor networks. However, some special characteristics of existing wireless network coding mechanisms degrade the performance of video data delivery. This work begins with a thorough investigation and understanding of the performance limitations of existing wireless network coding mechanisms. On this basis, we propose an Adaptive Opportunistic Network Coding mechanism (AONC) to improve the transmission quality of video stream in wireless multimedia sensor networks. First, we propose a novel asymmetric coding method to process the video data of different lengths. The aim is to improve data exchange gain. Second, we design an opportunistic forwarding strategy based on dynamic priority to ensure that packets have a better chance to be coded and transmitted, thus achieving much higher throughput. Finally, we present a traffic-aware data scheduling algorithm, working together with the above network coding mechanism, to reduce the loss of potential coding opportunities. Our simulation results demonstrate that, compared with the existing typical network coding mechanisms, AONC can greatly enhance video transmission quality and efficiently utilize bandwidth and energy resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.